Blood has many functions in your body. Blood tests help doctors check for certain diseases and conditions. Learn about blood functions and characteristics.
White Blood Cell and Red Blood Cell
Image by TheVisualMD
Blood
Blood Pressure and Circulating Blood
Image by TheVisualMD
Blood Pressure and Circulating Blood
Blood pressure is the force of the circulating blood against the inner walls of your blood vessels. You can feel this force when you take your pulse: what you are feeling is the force of your blood surging through your arteries. Although blood surges through your blood vessels, there is always pressure exerted on their walls. The amount of pressure is determined by how much blood your heart pumps and the amount of resistance to blood flow in your arteries.
Image by TheVisualMD
Blood
Your blood is made up of liquid and solids. The liquid part, called plasma, is made of water, salts, and protein. Over half of your blood is plasma. The solid part of your blood contains red blood cells, white blood cells, and platelets.
Red blood cells (RBC) deliver oxygen from your lungs to your tissues and organs. White blood cells (WBC) fight infection and are part of your immune system. Platelets help blood to clot when you have a cut or wound. Bone marrow, the spongy material inside your bones, makes new blood cells. Blood cells constantly die and your body makes new ones. Red blood cells live about 120 days, and platelets live about 6 days. Some white blood cells live less than a day, but others live much longer.
There are four blood types: A, B, AB, or O. Also, blood is either Rh-positive or Rh-negative. So if you have type A blood, it's either A positive or A negative. Which type you are is important if you need a blood transfusion. And your Rh factor could be important if you become pregnant - an incompatibility between your type and the baby's could create problems.
Blood tests such as blood count tests help doctors check for certain diseases and conditions. They also help check the function of your organs and show how well treatments are working. Problems with your blood may include bleeding disorders, excessive clotting and platelet disorders. If you lose too much blood, you may need a transfusion.
Source: National Heart, Lung, and Blood Institute (NHLBI)
Additional Materials (20)
Components of Blood and their function
Video by MooMooMath and Science/YouTube
Learn About How the Blood Works
Video by NHLBI/YouTube
Decode Your Blood Test: Red Blood Cells 💉 | Merck Manual Consumer Version
Video by Merck Manuals/YouTube
Blood, Part 1 - True Blood: Crash Course A&P #29
Video by CrashCourse/YouTube
Blood, Part 2 - There Will Be Blood: Crash Course A&P #30
Video by CrashCourse/YouTube
Why do blood types matter? - Natalie S. Hodge
Video by TED-Ed/YouTube
This browser does not support the video element.
Drop of Blood on Finger with Blood Vessel
A 2D animation beginning with a close up of a drop of blood filling three quarters of the screen. The camera quickly zooms out to a view of the entire drop of blood on the tip of a semi-transparent finger. Within the finger is an intricate network of tiny capillaries. Deep inside the network is the bone of the finger, or phalange, out of focus. The backgound is a photograph entirely out of focus.
Video by TheVisualMD
Haematology - Red Blood Cell Life Cycle
Video by Armando Hasudungan/YouTube
How are Red Blood Cells made? Erythropoiesis - Erythropoietin - Regulation - Hematopoiesis
Video by 5MinuteSchool/YouTube
How are White Blood Cells made? Leukopoiesis - Cytokines - Regulation
Video by 5MinuteSchool/YouTube
Structure and Function of White Blood Cells - Leukocytes - Leucocytes
Video by 5MinuteSchool/YouTube
Ever wondered what happens to your blood after donation?
Video by NHS Give Blood/YouTube
Can Synthetic Blood Help The World's Blood Shortage?
Video by Seeker+/YouTube
Blood coagulation || Blood clotting || coagulation || 3D Video
Video by Bifrost/YouTube
Blood Plasma
Image by geralt/Pixabay
Cord Blood 101: What is Cord Blood? | Cord Blood Registry
This image highlights the vital components of blood: 55% plasma Plasma is the liquid river that transports every blood cell to its destination. Oxygen-carrying RBCs couldn't move through arteries, veins and capillaries without it. Even though it is a watery, almost clear fluid, plasma contains many important substances, including blood-clotting agents called platelets and protective proteins called antibodies which help us fight infection. When the clotting agents are removed from blood plasma, it is called serum, which is essential in many life-saving medical situations such as transplant surgery and trauma. <1% white blood cells (wbcs or leukocytes) Some leukocytes are produced in the bone marrow, while others are generated in lymph nodes scattered throughout the body. They are far less numerous than their sister RBCs, but leukocytes are the bedrock of the immune system and are the body's front line of defense. Different types of leukocytes fight infections in different ways. Some target bacterial or fungal infections, while others respond to parasitic threats or allergic reactions. <1% platelets Platelets perform the vital function of clotting blood at wound sites. They are small, even in comparison to the other cells of your blood, but they pack a wallop when it comes to healing a scrape or staunching a more serious wound. When you cut yourself shaving, platelets arrive on the scene like your personal emergency medical team, creating a natural bandage of clotted blood, which eventually forms a scab. 45% red blood cells rbcs or erythrocytes) RBCs are produced in the bone marrow and perform the fundamental task of delivering oxygen to all of the body's cells. The vial is an example of the hematocrit, one of many tests that make up the complete blood count (CBC). Hematocrit measures the volume of RBCs in your blood. A normal hematocrit reading for women is between 36 to 44 percent; for men it's 41 to 50 percent.
Image by TheVisualMD
Red Blood Cell (RBC)
There are 20-30 trillion red blood cells (RBCs) in an adult's body. The life span of RBCs, which are produced in bone marrow, is about 100 days, which means that 2 million die (and are replaced) each second. In their short lifetimes, however, red blood cells can make 75,000 round trips between lungs, heart and tissues in the body.
Image by TheVisualMD
2:25
Components of Blood and their function
MooMooMath and Science/YouTube
0:21
Learn About How the Blood Works
NHLBI/YouTube
1:09
Decode Your Blood Test: Red Blood Cells 💉 | Merck Manual Consumer Version
Merck Manuals/YouTube
10:00
Blood, Part 1 - True Blood: Crash Course A&P #29
CrashCourse/YouTube
10:01
Blood, Part 2 - There Will Be Blood: Crash Course A&P #30
CrashCourse/YouTube
4:42
Why do blood types matter? - Natalie S. Hodge
TED-Ed/YouTube
0:06
Drop of Blood on Finger with Blood Vessel
TheVisualMD
6:14
Haematology - Red Blood Cell Life Cycle
Armando Hasudungan/YouTube
3:01
How are Red Blood Cells made? Erythropoiesis - Erythropoietin - Regulation - Hematopoiesis
5MinuteSchool/YouTube
5:58
How are White Blood Cells made? Leukopoiesis - Cytokines - Regulation
5MinuteSchool/YouTube
4:03
Structure and Function of White Blood Cells - Leukocytes - Leucocytes
5MinuteSchool/YouTube
13:51
Ever wondered what happens to your blood after donation?
NHS Give Blood/YouTube
12:41
Can Synthetic Blood Help The World's Blood Shortage?
Seeker+/YouTube
2:03
Blood coagulation || Blood clotting || coagulation || 3D Video
Bifrost/YouTube
Blood Plasma
geralt/Pixabay
1:54
Cord Blood 101: What is Cord Blood? | Cord Blood Registry
Individual blood cells were first detected and described in the 17th century. Later, red blood cells were counted manually from a blood smear, a thin film of blood prepared on a glass slide and examined under a microscope. Blood analysis is now automated, though blood smears are still used to detect visible abnormalities and to check or confirm the results of other tests. There are normally between 4.2-5.8 million red blood cells per microliter (about a drop), which means there are 20-30 trillion red blood cells circulating through the body of an adult.
Image by TheVisualMD
Roses Are Red and So Is . . . Blood?
When you think of blood, chances are you think of the color red. But blood actually comes in a variety of colors, including red, blue, green, and purple. This rainbow of colors can be traced to the protein molecules that carry oxygen in the blood. Different proteins produce different colors.
Red Blood
Humans, along with most other animals, birds, reptiles, and fish, have red blood. We all use an oxygen-carrying blood protein, known as hemoglobin, that contains iron. It’s the iron that gives blood its dark red color in the body. When blood comes into contact with air, it turns the classic scarlet red. Some people appear to have blue blood in their veins. That’s just an optical illusion caused by the way the skin filters light.
Blue Blood
The term blue blood often refers to people related to kings and queens. But organisms with actual blue-colored blood are far from royal. They include snails, spiders, slugs, octopuses, and squid. The protein that carries oxygen in these creatures is called hemocyanin. Instead of iron, this protein contains copper. The blood appears clear when it’s not carrying oxygen. It turns blue when it picks up oxygen.
Green Blood
Science fiction aliens aren’t the only ones with green blood. Earthbound creatures with green blood include fantastically shaped sea worms, some leeches, and earthworms. These animals have a blood protein called chlorocruorin. It’s similar to hemoglobin but doesn’t hold oxygen as tightly. Also, it floats free in the bloodstream instead of being inside a blood cell.
Purple Blood
Peanut worms, duck leeches, and bristle worms, all of which live in the ocean, use the protein hemerythrin to carry oxygen in the blood. Without oxygen, their blood is clear in color. When it carries oxygen, it turns purple.
Source: Beth Azar and Alisa Zapp Machalek / Biomedical Beat Blog – National Institute of General Medical Sciences
Additional Materials (6)
What Color is Your Blood?
Video by SciShow/YouTube
What Determines the Colour of our Blood? | Fun Da Mental Facts
Video by Da Vinci Kids/YouTube
Why is Octopus Blood Blue?
Video by Tech Explorist/YouTube
Fast Facts About Blood
Video by WebMD/YouTube
Your blood is red, so why are your veins blue?
Video by Tech Insider/YouTube
38 Mindblowing Blood Facts You Have To Know
Video by Facts Net/YouTube
4:10
What Color is Your Blood?
SciShow/YouTube
2:30
What Determines the Colour of our Blood? | Fun Da Mental Facts
Da Vinci Kids/YouTube
2:09
Why is Octopus Blood Blue?
Tech Explorist/YouTube
1:04
Fast Facts About Blood
WebMD/YouTube
1:36
Your blood is red, so why are your veins blue?
Tech Insider/YouTube
8:25
38 Mindblowing Blood Facts You Have To Know
Facts Net/YouTube
Functions
5 Amazing Facts about the Red Blood Cell
Image by TheVisualMD
5 Amazing Facts about the Red Blood Cell
5 Amazing Facts about the Red Blood Cell : Your kidneys regulate red blood cell production. Red blood cells transport oxygen from the lungs to all the tissues of the body that require it. The kidneys measure oxygen levels in the blood. When they detect below-normal oxygen levels, the kidneys release the hormone erythropoietin (EPO). EPO travels from the kidneys to your bone marrow, where about 95% of blood cells are made. There, EPO binds to receptors in the stem cell walls. This triggers a series of events inside the stem cells that instructs their DNA to transform them into red blood cells. People with kidney failure become anemic because the kidneys no longer make enough EPO to stimulate red blood cell production.
Image by TheVisualMD
Functions of Blood
The primary function of blood is to deliver oxygen and nutrients to and remove wastes from body cells, but that is only the beginning of the story. The specific functions of blood also include defense, distribution of heat, and maintenance of homeostasis.
Transportation
Nutrients from the foods you eat are absorbed in the digestive tract. Most of these travel in the bloodstream directly to the liver, where they are processed and released back into the bloodstream for delivery to body cells. Oxygen from the air you breathe diffuses into the blood, which moves from the lungs to the heart, which then pumps it out to the rest of the body. Moreover, endocrine glands scattered throughout the body release their products, called hormones, into the bloodstream, which carries them to distant target cells. Blood also picks up cellular wastes and byproducts, and transports them to various organs for removal. For instance, blood moves carbon dioxide to the lungs for exhalation from the body, and various waste products are transported to the kidneys and liver for excretion from the body in the form of urine or bile.
Defense
Many types of WBCs protect the body from external threats, such as disease-causing bacteria that have entered the bloodstream in a wound. Other WBCs seek out and destroy internal threats, such as cells with mutated DNA that could multiply to become cancerous, or body cells infected with viruses.
When damage to the vessels results in bleeding, blood platelets and certain proteins dissolved in the plasma, the fluid portion of the blood, interact to block the ruptured areas of the blood vessels involved. This protects the body from further blood loss.
Maintenance of Homeostasis
Recall that body temperature is regulated via a classic negative-feedback loop. If you were exercising on a warm day, your rising core body temperature would trigger several homeostatic mechanisms, including increased transport of blood from your core to your body periphery, which is typically cooler. As blood passes through the vessels of the skin, heat would be dissipated to the environment, and the blood returning to your body core would be cooler. In contrast, on a cold day, blood is diverted away from the skin to maintain a warmer body core. In extreme cases, this may result in frostbite.
Blood also helps to maintain the chemical balance of the body. Proteins and other compounds in blood act as buffers, which thereby help to regulate the pH of body tissues. Blood also helps to regulate the water content of body cells.
Source: CNX OpenStax
Additional Materials (7)
Components of Blood and their function
Video by MooMooMath and Science/YouTube
Learn All about Blood - Anatomy, Physiology, Composition, Function & Disorders
Video by FreeMedEducation/YouTube
Blood Structure and Function: Why is Blood Important
Video by Interactive Biology/YouTube
Structure and Function of White Blood Cells - Leukocytes - Leucocytes
Video by 5MinuteSchool/YouTube
Homeostasis and Negative/Positive Feedback
Video by Amoeba Sisters/YouTube
Blood and Related Conditions
Blood and Related Conditions : Anemia results when there are too few red blood cells circulating in the bloodstream to deliver adequate oxygen to body tissues. There are different types and causes of anemia, including malnutrition, chronic bleeding, and diseases that result in red blood cells either being destroyed too quickly or produced too slowly.
Image by TheVisualMD
River of Life: Blood Sustains & Protects
Image by TheVisualMD
2:25
Components of Blood and their function
MooMooMath and Science/YouTube
11:56
Learn All about Blood - Anatomy, Physiology, Composition, Function & Disorders
FreeMedEducation/YouTube
7:49
Blood Structure and Function: Why is Blood Important
Interactive Biology/YouTube
4:03
Structure and Function of White Blood Cells - Leukocytes - Leucocytes
5MinuteSchool/YouTube
6:26
Homeostasis and Negative/Positive Feedback
Amoeba Sisters/YouTube
Blood and Related Conditions
TheVisualMD
River of Life: Blood Sustains & Protects
TheVisualMD
Composition
Blood Components
Image by TheVisualMD
Blood Components
This image highlights the vital components of blood: 55% plasma Plasma is the liquid river that transports every blood cell to its destination. Oxygen-carrying RBCs couldn't move through arteries, veins and capillaries without it. Even though it is a watery, almost clear fluid, plasma contains many important substances, including blood-clotting agents called platelets and protective proteins called antibodies which help us fight infection. When the clotting agents are removed from blood plasma, it is called serum, which is essential in many life-saving medical situations such as transplant surgery and trauma. <1% white blood cells (wbcs or leukocytes) Some leukocytes are produced in the bone marrow, while others are generated in lymph nodes scattered throughout the body. They are far less numerous than their sister RBCs, but leukocytes are the bedrock of the immune system and are the body's front line of defense. Different types of leukocytes fight infections in different ways. Some target bacterial or fungal infections, while others respond to parasitic threats or allergic reactions. <1% platelets Platelets perform the vital function of clotting blood at wound sites. They are small, even in comparison to the other cells of your blood, but they pack a wallop when it comes to healing a scrape or staunching a more serious wound. When you cut yourself shaving, platelets arrive on the scene like your personal emergency medical team, creating a natural bandage of clotted blood, which eventually forms a scab. 45% red blood cells rbcs or erythrocytes) RBCs are produced in the bone marrow and perform the fundamental task of delivering oxygen to all of the body's cells. The vial is an example of the hematocrit, one of many tests that make up the complete blood count (CBC). Hematocrit measures the volume of RBCs in your blood. A normal hematocrit reading for women is between 36 to 44 percent; for men it's 41 to 50 percent.
Image by TheVisualMD
Composition of Blood
You have probably had blood drawn from a superficial vein in your arm, which was then sent to a lab for analysis. Some of the most common blood tests—for instance, those measuring lipid or glucose levels in plasma—determine which substances are present within blood and in what quantities. Other blood tests check for the composition of the blood itself, including the quantities and types of formed elements.
One such test, called a hematocrit, measures the percentage of RBCs, clinically known as erythrocytes, in a blood sample. It is performed by spinning the blood sample in a specialized centrifuge, a process that causes the heavier elements suspended within the blood sample to separate from the lightweight, liquid plasma (image). Because the heaviest elements in blood are the erythrocytes, these settle at the very bottom of the hematocrit tube. Located above the erythrocytes is a pale, thin layer composed of the remaining formed elements of blood. These are the WBCs, clinically known as leukocytes, and the platelets, cell fragments also called thrombocytes. This layer is referred to as the buffy coat because of its color; it normally constitutes less than 1 percent of a blood sample. Above the buffy coat is the blood plasma, normally a pale, straw-colored fluid, which constitutes the remainder of the sample.
The volume of erythrocytes after centrifugation is also commonly referred to as packed cell volume (PCV). In normal blood, about 45 percent of a sample is erythrocytes. The hematocrit of any one sample can vary significantly, however, about 36–50 percent, according to gender and other factors. Normal hematocrit values for females range from 37 to 47, with a mean value of 41; for males, hematocrit ranges from 42 to 52, with a mean of 47. The percentage of other formed elements, the WBCs and platelets, is extremely small so it is not normally considered with the hematocrit. So the mean plasma percentage is the percent of blood that is not erythrocytes: for females, it is approximately 59 (or 100 minus 41), and for males, it is approximately 53 (or 100 minus 47).
Source: CNX OpenStax
Additional Materials (8)
What Are the Components of Blood?
Video by Seeker/YouTube
The Components of Blood and Their Importance
Video by American Society of Hematology/YouTube
Human Blood Video | Blood Components | Blood Cells
Shows the components of blood: erythrocytes ( red blood cells) leukocytes (white blood cells), and platelets as a large amount of blood rushes toward a stationary camera
Video by TheVisualMD
This browser does not support the video element.
Red Blood Cells Carry Oxygen
This video focuses on one of the main components of blood, the red blood cell and its function to carry oxygen. The video begins with revealing the red blood cells and the heart that pumps the oxygenated blood to the rest of the body. Hemoglobin is the protein molecule found in these red blood cells that enable blood to transport oxygen. If the blood's capacity to transport oxygen to the tissues is reduced due to a decrease in the number of red blood cells, anemia may occur.
Video by TheVisualMD
This browser does not support the video element.
Complete Blood Count, and Baselining Your Health
Video Topics : Our lifeblood consists of many components and a complete blood count (CBC) includes measurements of the fundamental elements. The largest categories are red and white blood cells (RBCs and WBCs) and cell fragments called platelets, which play roles in blood clotting. There are 20-30 trillion red blood cells in the body of an adult, each with a lifespan of about 100 days (RBCs contain an iron-containing protein called hemoglobin that enables them to carry oxygen to tissues throughout the body and then return carbon dioxide to the lungs). WBCs are in the front lines in the body's ongoing fight against harmful viruses, bacteria and even fungus; when a pathogen enters the body, WBCs mobilize in a coordinated defense response to eliminate, neutralize or mark the invader for destruction. The liquid portion of blood is called plasma and it carries nutrients, electrolytes, waste products, and hormones.
Video by TheVisualMD
Composition of Blood
The cellular elements of blood include a vast number of erythrocytes and comparatively fewer leukocytes and platelets. Plasma is the fluid in which the formed elements are suspended. A sample of blood spun in a centrifuge reveals that plasma is the lightest component. It floats at the top of the tube separated from the heaviest elements, the erythrocytes, by a buffy coat of leukocytes and platelets. Hematocrit is the percentage of the total sample that is comprised of erythrocytes. Depressed and elevated hematocrit levels are shown for comparison.
Image by CNX Openstax
7:56
What Are the Components of Blood?
Seeker/YouTube
0:52
The Components of Blood and Their Importance
American Society of Hematology/YouTube
3:18
Human Blood Video | Blood Components | Blood Cells
Also called: Hematrocit, HCT, Crit, Packed Cell Volume, PCV
Hematocrit is a blood test that measures how much of a person's blood is made up of red blood cells. Hematocrit levels that are too high or too low can be a sign of a blood disorder, dehydration, or other medical conditions that affect your blood.
Hematocrit Blood Test
Also called: Hematrocit, HCT, Crit, Packed Cell Volume, PCV
Hematocrit is a blood test that measures how much of a person's blood is made up of red blood cells. Hematocrit levels that are too high or too low can be a sign of a blood disorder, dehydration, or other medical conditions that affect your blood.
{"label":"Hematocrit reference range","scale":"lin","step":0.1,"hideunits":false,"items":[{"flag":"abnormal","label":{"short":"Low","long":"Low","orientation":"horizontal"},"values":{"min":0,"max":40.7},"text":"A hematocrit level below the normal range, meaning the person has too few red blood cells, is called anemia.","conditions":["Anemia","Bleeding","Bone marrow cancers and disorders","Chronic illness","Chronic kidney disease","Destruction of red blood cells (hemolysis)","Leukemia","Malnutrition","Too little iron, folate, vitamin B12, and vitamin B6 in the diet","Too much water in the body"]},{"flag":"normal","label":{"short":"Normal","long":"Normal","orientation":"horizontal"},"values":{"min":40.7,"max":50.3},"text":"Normal hematocrit levels vary based on age and race. In adults, normal levels for men range from 41%-50%. For women, the normal range is slightly lower: 36%-44%.","conditions":[]},{"flag":"abnormal","label":{"short":"High","long":"High","orientation":"horizontal"},"values":{"min":50.3,"max":100},"text":"A hematocrit level above the normal range, meaning too many red blood cells, may indicate polycythemia or erythrocytosis. High hematocrits can be seen in people living at high altitudes and in chronic smokers.","conditions":["Polycythemia vera","Congenital heart disease","Exposure to high altitude","Failure of the right side of the heart","Low levels of oxygen in the blood","Scarring or thickening of the lungs","Too little water in the body (dehydration)"]}],"units":[{"printSymbol":"%","code":"%","name":"percent"}],"value":45.5}[{"abnormal":0},{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
%
40.7
50.3
Your result is Normal.
Normal hematocrit levels vary based on age and race. In adults, normal levels for men range from 41%-50%. For women, the normal range is slightly lower: 36%-44%.
Related conditions
A hematocrit test is a blood test that measures how much of your blood is made up of red blood cells. Red blood cells carry oxygen from your lungs to the rest of your body. The other parts of your blood include white blood cells (to help fight infection), platelets (to help make blood clots to stop bleeding), and a liquid called plasma.
Hematocrit levels that are too high or too low can be a sign of a blood disorder, dehydration, or other medical conditions that affect your blood.
Other names: HCT, packed cell volume, PCV, Crit; H and H (Hemoglobin and Hematocrit)
A hematocrit test is often part of a complete blood count (CBC). A CBC is a common blood test that measures the different parts of your blood. It is used to check your general health. It may also be used to help diagnose blood disorders, including anemia, a condition in which you don't have enough red blood cells, and polycythemia, an uncommon disorder in which you have too many red blood cells and your blood becomes too thick.
Your health care provider may order a hematocrit test as part of your regular checkup or to monitor your health if you are being treated for cancer or have an ongoing health condition. Your provider may also order this test if you have symptoms of a red blood cell disorder, such as anemia or polycythemia:
Symptoms of anemia (too few red blood cells) may include:
Shortness of breath
Weakness or fatigue
Headache
Dizziness
Arrhythmia (a problem with the rate or rhythm of your heartbeat)
Symptoms of polycythemia (too many red blood cells) may include:
Headache
Feeling light-headed or dizzy
Shortness of breath
Weakness or fatigue
Skin symptoms such as itching after a shower or bath, burning, or a red face
Heavy sweating, especially during sleep
Blurred or double vision and blind spots
Bleeding gums and heavy bleeding from small cuts
A health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
You don't need any special preparations for a hematocrit test. If your provider has ordered more tests on your blood sample, you may need to fast (not eat or drink) for several hours before the test. Your provider will let you know if there are any special instructions to follow.
There is very little risk to having a hematocrit test or other type of blood test. You may have slight pain or bruising at the spot where the needle was put in, but most symptoms go away quickly.
Your hematocrit test results are reported as a number. That number is the percentage of your blood that's made of red blood cells. For example, if your hematocrit test result is 42, it means that 42% of your blood is red blood cells and the rest is white blood cells, platelets, and blood plasma.
A hematocrit level that's lower than normal may be a sign that:
Your body doesn't have enough red blood cells (anemia). There are many types of anemia that can be caused by different medical conditions.
Your body is making too many white blood cells, which may be caused by:
Bone marrow disease
Certain cancers, including leukemia, lymphoma, multiple myeloma, or cancers that spread to the bone marrow from other parts of the body
A hematocrit level that's higher than normal may be a sign that:
Your body is making too many red blood cells, which may be caused by:
Lung disease
Congenital heart disease
Heart failure
Polycythemia
Your blood plasma level is too low, which may be caused by:
Dehydration, the most common cause of a high hematocrit
Shock
If your results are not in the normal range, it doesn't always mean that you have a medical condition that needs treatment. Living at high altitudes where there's less oxygen in the air may cause a high hematocrit. That's because your body responds to low oxygen levels by making more red blood cells so that you get the oxygen you need.
Pregnancy can cause a low hematocrit. That's because the body has more fluid than normal during pregnancy, which decreases the percentage that's made of red blood cells.
To learn what your test results mean, talk with your provider.
Normal hematocrit levels will be different depending on your sex, age, and the altitude where you live. Ask your provider what hematocrit level is normal for you.
Hematocrit Test: MedlinePlus Medical Test [accessed on Jan 20, 2024]
Hematocrit: MedlinePlus Medical Encyclopedia [accessed on Jan 20, 2024]
Hematrocit Blood Test - Testing.com. Sep 13, 2022 [accessed on Jan 20, 2024]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (30)
This browser does not support the video element.
Complete Blood Count, and Baselining Your Health
Video Topics : Our lifeblood consists of many components and a complete blood count (CBC) includes measurements of the fundamental elements. The largest categories are red and white blood cells (RBCs and WBCs) and cell fragments called platelets, which play roles in blood clotting. There are 20-30 trillion red blood cells in the body of an adult, each with a lifespan of about 100 days (RBCs contain an iron-containing protein called hemoglobin that enables them to carry oxygen to tissues throughout the body and then return carbon dioxide to the lungs). WBCs are in the front lines in the body's ongoing fight against harmful viruses, bacteria and even fungus; when a pathogen enters the body, WBCs mobilize in a coordinated defense response to eliminate, neutralize or mark the invader for destruction. The liquid portion of blood is called plasma and it carries nutrients, electrolytes, waste products, and hormones.
Video by TheVisualMD
Vial of Centrifuged Blood
Blood is made up of red and white blood cell (as well as platelets), suspended in a liquid known as blood plasma. Plasma, which makes up 55% of our blood's volume, is a clear liquid (mainly water) that transports food molecules, hormones, waste as well as a wide range of dissolved chemicals. Red cells, which normally make up 40-50% of total blood volume, are produced continuously in our bone marrow at the rate of about 2-3 million cells per second. White cells make up a very small part of blood's volume-normally only about 1% in healthy people. This image shows two vials of centrifuged blood. The left vial shows healthy amount of red blood cells in female (36-44%) ; The right vial shows healthy amount of red blood cells in male (41-50%). The hematocrit (along with the hemoglobin test) is the central test to diagnosing anemia in that it indicates the amount of RBCs in the blood.
Image by TheVisualMD
Red Blood Cells, Bone Marrow
A skeleton may have a dry and lifeless Halloween image, but bone is actually dynamic, living tissue. Bone is not uniformly solid; within its interior is a network of cavities that house blood vessels and marrow. Bone marrow, particularly in larger bones, is where stem cells give rise to red blood cells (erythrocytes) as well as white blood cells (leukocytes) and blood clotting agents (platelets). As the source of blood cells, the bone marrow is critical to health. Disease or damage to bone marrow can result in either too many or too few blood cells.
Hematocrit Nursing Considerations, Normal Range, Nursing Care, Lab Values Nursing
Video by NURSINGcom/YouTube
Hematocrit, Dehydration
Blood is composed of cells (primarily red blood cells, but also white blood cells and cell fragments called platelets) along with a liquid portion known as plasma. The ratio of the volume of red blood cells to the volume of plasma is an important health indicator and is known as the hematocrit. The most common cause of a high hematocrit is dehydration, which is usually temporary and easily remedied by increasing fluid intake, thereby restores the balance between RBCs and blood plasma volume.
Image by TheVisualMD
Hematocrit, Anemia
Blood is composed of cells (primarily red blood cells, but also white blood cells and cell fragments called platelets) along with a liquid portion known as plasma. The ratio of the volume of red blood cells to the volume of plasma is an important health indicator and is known as the hematocrit. A low hematocrit usually indicates anemia, which occurs when red blood cells are being either destroyed too quickly or produced too slowly; with fewer red blood cells, less oxygen is delivered to body tissues.
Image by TheVisualMD
Vial of Blood for Hematocrit Test
This image is a vial of blood that has been centrifuged (and thus separated) to determine hematocrit. This vial shows, from top to bottom, 55% plasma, <1% white blood cells, <1% platelets , 45% red blood cells. Hematocrit measures how much of the blood, by volume, is taken up by RBCs. A normal range for hematocrit is 41 to 50 percent in men and 36 to 44 percent in women. In many cases, a reading below the normal range for hematocrit will lead to a diagnosis of CKD-related anemia.This other diagnostic test is the hemoglobin test, which measures the amount of hemoglobin molecules in the blood and is a good indicator of the body's ability to carry oxygen throughout the body.
Image by TheVisualMD
Hematocrit: Bone Marrow
Bone marrow produces about 2 million red blood cells (RBCs) a second to maintain a healthy hematocrit. Many conditions, including kidney disease, chemotherapy, and dietary deficiencies, can reduce RBC production, while others can result in too many RBCs.
Image by TheVisualMD
Hematocrit: Blood Cells
The hematocrit is another way to look at the health of red blood cells (RBCs). Blood is composed of cells (primarily RBCs) and a liquid portion called plasma. The proportions of RBCs and plasma must be kept in balance and this is what the hematocrit measures.
Image by TheVisualMD
Blood
Components of Blood : Blood is mostly made up of plasma and red and white blood cells. But it also contains many other substances as well, like platelets, hormones, nutrients such as glucose, and fats like cholesterol. Blood is the fluid of life, transporting oxygen from the lungs to body tissue and carbon dioxide from body tissue to the lungs.
Image by TheVisualMD
Hematocrit
Hematocrit Blood Vials : If you are at risk for cardiovascular disease, your doctor may order a cholesterol and triglyceride level test as well as a complete blood count (CBC). Abnormal results may be the first clue in determining risk of and in diagnosing cardiovascular disease.
Image by TheVisualMD
Blood Smear Showing Reduced Red Blood Cell Count
Individual blood cells were first detected and described in the 17th century. Later, red blood cells (RBCs) were counted manually from a blood smear, a thin film of blood prepared on a glass slide and examined under a microscope (blood analysis is now automated, though smears are still used to detect visible abnormalities and to check or confirm the results of other tests). Anemia results when there are too few RBCs in circulation because they are being destroyed too quickly or produced too slowly. Anemia can be temporary or long term and range from mild to severe. Folate (also known as vitamin B9) is necessary for red blood cell production and the prevention of anemia, as well as the metabolism of carbohydrates. But folate also plays key roles in the synthesis and maintenance of DNA and is especially important in cell division and growth in fetal development (deficiencies of the vitamin in pregnancy is a common cause of birth defects). Pernicious anemia is a disorder in which the body's loses its ability to utilize folate and vitamin B12.
Image by TheVisualMD
Blood Smear Showing Normal Red Blood Cell Count
Individual blood cells were first detected and described in the 17th century. Later, red blood cells were counted manually from a blood smear, a thin film of blood prepared on a glass slide and examined under a microscope. Blood analysis is now automated, though blood smears are still used to detect visible abnormalities and to check or confirm the results of other tests. There are normally between 4.2-5.8 million red blood cells per microliter (about a drop), which means there are 20-30 trillion red blood cells circulating through the body of an adult.
Image by TheVisualMD
This browser does not support the video element.
Red Blood Cells Carry Oxygen
This video focuses on one of the main components of blood, the red blood cell and its function to carry oxygen. The video begins with revealing the red blood cells and the heart that pumps the oxygenated blood to the rest of the body. Hemoglobin is the protein molecule found in these red blood cells that enable blood to transport oxygen. If the blood's capacity to transport oxygen to the tissues is reduced due to a decrease in the number of red blood cells, anemia may occur.
Video by TheVisualMD
Components of Blood
Components of Blood : Our blood is composed of many different components, the largest categories being red and white blood cells (blood-clotting platelets are another key component) and the liquid portion known as blood plasma. A Complete Blood Count (CBC) includes several of the most basic, yet important, measurements of these components.
Image by TheVisualMD
Blood and Related Conditions
Blood and Related Conditions : Anemia results when there are too few red blood cells circulating in the bloodstream to deliver adequate oxygen to body tissues. There are different types and causes of anemia, including malnutrition, chronic bleeding, and diseases that result in red blood cells either being destroyed too quickly or produced too slowly.
Image by TheVisualMD
Pellet of Lymphocyte Cells Created in the Centrifuge
This photograph shows Wendy Watford, Ph.D. holding a test tube containing isolated lymphocyte cells. The cells were spun in a centrifuge to create a pellet at the bottom of the test tube. The cells will be labeled with CFSE dye, which will stain the membranes of the cells. After culturing the cells for three days she will determine the number of cell divisions that have taken place by measuring the dilution of the CFSE dye. The purpose of the work is to measure the proliferation of lymphocytes under various conditions. The principal investigator for this work is John J. O’Shea, M.D., NIAMS Scientific Director.
Image by NIAMS/Photographer: Rhoda Baer
Red Blood Cells
Digital holographic microscopy (DHM) image of red blood cells.
Image by Egelberg (talk)
Test Tube
Between 5,000 and 8,000 blood serum, fecal, urine, viral and respiratory samples arrive six days a week from U.S. Air Force hospitals and clinics worldwide, as well as some other Department of Defense facilities, for analysis at the Epidemiology Laboratory Service, also known as the "Epi Lab" at the 711th Human Performance Wing’s United States Air Force School of Aerospace Medicine and Public Health at Wright Patterson AFB, Ohio.The lab is a Department of Defense reference laboratory offering clinical diagnostic, public health, and force health screening and testing. (U.S. Air Force photo by J.M. Eddins Jr.)
Image by U.S. Air Force photo by J.M. Eddins Jr.
Phlebotomy
This image was uploaded as part of Wiki Loves e-textbooks contest in Poland.
Image by Sean Michael Ragan
Red Blood Cells Carry Oxygen
This video focuses on one of the main components of blood, the red blood cell and its function to carry oxygen. The video begins with revealing the red blood cells and the heart that pumps the oxygenated blood to the rest of the body. Hemoglobin is the protein molecule found in these red blood cells that enable blood to transport oxygen. If the blood's capacity to transport oxygen to the tissues is reduced due to a decrease in the number of red blood cells, anemia may occur.
Image by TheVisualMD
Composition of Blood
Composition of Blood
Image by OpenStax College
Hematology | Hematocrit
Video by Ninja Nerd/YouTube
Erythrocyte indices (Hemoglobin, Hematocrit, MCV, MCH & MCHC) What Do These Lab Tests Mean?
Video by Medicosis Perfectionalis/YouTube
How to Interpret RBC Indices (e.g. hemoglobin vs. hematocrit, MCV, RDW)
Video by Strong Medicine/YouTube
Haematocrit or PCV
Video by LabsforLifeProject/YouTube
Packed cell volume/ Hematocrit
Video by Pathology Simplified/YouTube
Fetal hemoglobin and hematocrit | Human anatomy and physiology | Health & Medicine | Khan Academy
Your body contains about 10-12 pints (4.7-5.7 L) of blood. That life-giving blood is constantly on the move: it makes the entire circuit of your body three times every minute, passing through 60,000 miles of blood vessels. That's enough to circle the globe two-and-a-half times. In the course of an average lifetime, a heart pumps about a million barrels of blood. That's enough to fill three supertankers.
Image by TheVisualMD
Characteristics of Blood
When you think about blood, the first characteristic that probably comes to mind is its color. Blood that has just taken up oxygen in the lungs is bright red, and blood that has released oxygen in the tissues is a more dusky red. This is because hemoglobin is a pigment that changes color, depending upon the degree of oxygen saturation.
Blood is viscous and somewhat sticky to the touch. It has a viscosity approximately five times greater than water. Viscosity is a measure of a fluid’s thickness or resistance to flow, and is influenced by the presence of the plasma proteins and formed elements within the blood. The viscosity of blood has a dramatic impact on blood pressure and flow. Consider the difference in flow between water and honey. The more viscous honey would demonstrate a greater resistance to flow than the less viscous water. The same principle applies to blood.
The normal temperature of blood is slightly higher than normal body temperature—about 38 °C (or 100.4 °F), compared to 37 °C (or 98.6 °F) for an internal body temperature reading, although daily variations of 0.5 °C are normal. Although the surface of blood vessels is relatively smooth, as blood flows through them, it experiences some friction and resistance, especially as vessels age and lose their elasticity, thereby producing heat. This accounts for its slightly higher temperature.
The pH of blood averages about 7.4; however, it can range from 7.35 to 7.45 in a healthy person. Blood is therefore somewhat more basic (alkaline) on a chemical scale than pure water, which has a pH of 7.0. Blood contains numerous buffers that actually help to regulate pH.
Blood constitutes approximately 8 percent of adult body weight. Adult males typically average about 5 to 6 liters of blood. Females average 4–5 liters.
Source: CNX OpenStax
Additional Materials (4)
Your blood vessels are the body's superhighway
Your blood vessels are the body's superhighway. Blood races through more than 50,000 miles of vessels, delivering nutrients to cells and hauling waste products away from them. One of the blood's most vital passengers is oxygen. Oxygen binds to hemoglobin, a protein in red blood cells, and is carried to cells throughout the body. Anemia occurs when hemoglobin does not carry enough oxygen to cells. There are several possible causes. Sometimes the body has too little iron, which is essential to the formation of hemoglobin. Deficiencies of vitamin B-12 or folic acid can also cause anemia. Sometimes there are not enough red blood cells, which can result from ulcers or other undetected sources of blood loss. And sometimes the body simply demands more iron for growth: Pregnant women and growing toddlers are at increased risk of anemia. People who are anemic can have headaches, dizziness, difficulty breathing, fatigue and they may feel cold. Anyone who has such symptoms can find out, through a simple blood test, whether some form of anemia is to blame. To keep that superhighway moving, we have to make sure that the blood is doing its job.
Image by TheVisualMD
Blood, Part 1 - True Blood: Crash Course A&P #29
Video by CrashCourse/YouTube
38 Mindblowing Blood Facts You Have To Know
Video by Facts Net/YouTube
Temperature Regulation Of The Human Body | Physiology | Biology | FuseSchool
Video by FuseSchool - Global Education/YouTube
Your blood vessels are the body's superhighway
TheVisualMD
10:00
Blood, Part 1 - True Blood: Crash Course A&P #29
CrashCourse/YouTube
8:25
38 Mindblowing Blood Facts You Have To Know
Facts Net/YouTube
3:30
Temperature Regulation Of The Human Body | Physiology | Biology | FuseSchool
FuseSchool - Global Education/YouTube
Hematopoiesis
Blood and Blood Components
Image by TheVisualMD
Blood and Blood Components
Like bone and cartilage, blood can be seen as a connective tissue, a mass of cells embedded in a framework. However, because its job is mobile, not fixed, its matrix is a liquid - plasma. Suspended in plasma are trillions of blood cells. Dimpled, disk-shaped red blood cells, built to provide a large surface in relation to volume, transport oxygen to tissues. Granular, many-lobed white blood cells, outnumbered by about 700 to 1, comprise a mobile defense force. Platelets, designed to aid in tissue repair, are tiny round or oval cell fragments that congregate around damaged sites in the bloodstream, swelling and sticking to each other to from temporary pugs that can stop leaks.
Image by TheVisualMD
Production of the Formed Elements
The lifespan of the formed elements is very brief. Although one type of leukocyte called memory cells can survive for years, most erythrocytes, leukocytes, and platelets normally live only a few hours to a few weeks. Thus, the body must form new blood cells and platelets quickly and continuously. When you donate a unit of blood during a blood drive (approximately 475 mL, or about 1 pint), your body typically replaces the donated plasma within 24 hours, but it takes about 4 to 6 weeks to replace the blood cells. This restricts the frequency with which donors can contribute their blood. The process by which this replacement occurs is called hemopoiesis , or hematopoiesis (from the Greek root haima- = “blood”; -poiesis = “production”).
Through the process of hemopoiesis, the formed elements of blood are continually produced, replacing the relatively short-lived erythrocytes, leukocytes, and platelets. Hemopoiesis begins in the red bone marrow, with hemopoietic stem cells that differentiate into myeloid and lymphoid lineages. Myeloid stem cells give rise to most of the formed elements. Lymphoid stem cells give rise only to the various lymphocytes designated as B and T cells, and NK cells. Hemopoietic growth factors, including erythropoietin, thrombopoietin, colony-stimulating factors, and interleukins, promote the proliferation and differentiation of formed elements.
Sites of Hemopoiesis
Prior to birth, hemopoiesis occurs in a number of tissues, beginning with the yolk sac of the developing embryo, and continuing in the fetal liver, spleen, lymphatic tissue, and eventually the red bone marrow. Following birth, most hemopoiesis occurs in the red marrow, a connective tissue within the spaces of spongy (cancellous) bone tissue. In children, hemopoiesis can occur in the medullary cavity of long bones; in adults, the process is largely restricted to the cranial and pelvic bones, the vertebrae, the sternum, and the proximal epiphyses of the femur and humerus.
Throughout adulthood, the liver and spleen maintain their ability to generate the formed elements. This process is referred to as extramedullary hemopoiesis (meaning hemopoiesis outside the medullary cavity of adult bones). When a disease such as bone cancer destroys the bone marrow, causing hemopoiesis to fail, extramedullary hemopoiesis may be initiated.
Differentiation of Formed Elements from Stem Cells
All formed elements arise from stem cells of the red bone marrow. Recall that stem cells undergo mitosis plus cytokinesis (cellular division) to give rise to new daughter cells: One of these remains a stem cell and the other differentiates into one of any number of diverse cell types. Stem cells may be viewed as occupying a hierarchal system, with some loss of the ability to diversify at each step. The totipotent stem cell is the zygote, or fertilized egg. The totipotent (toti- = “all”) stem cell gives rise to all cells of the human body. The next level is the pluripotent stem cell, which gives rise to multiple types of cells of the body and some of the supporting fetal membranes. Beneath this level, the mesenchymal cell is a stem cell that develops only into types of connective tissue, including fibrous connective tissue, bone, cartilage, and blood, but not epithelium, muscle, and nervous tissue. One step lower on the hierarchy of stem cells is the hemopoietic stem cell, or hemocytoblast. All of the formed elements of blood originate from this specific type of cell.
Hemopoiesis begins when the hemopoietic stem cell is exposed to appropriate chemical stimuli collectively called hemopoietic growth factors, which prompt it to divide and differentiate. One daughter cell remains a hemopoietic stem cell, allowing hemopoiesis to continue. The other daughter cell becomes either of two types of more specialized stem cells (image):
Lymphoid stem cells give rise to a class of leukocytes known as lymphocytes, which include the various T cells, B cells, and natural killer (NK) cells, all of which function in immunity. However, hemopoiesis of lymphocytes progresses somewhat differently from the process for the other formed elements. In brief, lymphoid stem cells quickly migrate from the bone marrow to lymphatic tissues, including the lymph nodes, spleen, and thymus, where their production and differentiation continues. B cells are so named since they mature in the bone marrow, while T cells mature in the thymus.
Myeloid stem cells give rise to all the other formed elements, including the erythrocytes; megakaryocytes that produce platelets; and a myeloblast lineage that gives rise to monocytes and three forms of granular leukocytes: neutrophils, eosinophils, and basophils.
Hematopoietic System of Bone Marrow Hemopoiesis is the proliferation and differentiation of the formed elements of blood.
Lymphoid and myeloid stem cells do not immediately divide and differentiate into mature formed elements. As you can see in image, there are several intermediate stages of precursor cells (literally, forerunner cells), many of which can be recognized by their names, which have the suffix -blast. For instance, megakaryoblasts are the precursors of megakaryocytes, and proerythroblasts become reticulocytes, which eject their nucleus and most other organelles before maturing into erythrocytes.
Hemopoietic Growth Factors
Development from stem cells to precursor cells to mature cells is again initiated by hemopoietic growth factors. These include the following:
Erythropoietin (EPO) is a glycoprotein hormone secreted by the interstitial fibroblast cells of the kidneys in response to low oxygen levels. It prompts the production of erythrocytes. Some athletes use synthetic EPO as a performance-enhancing drug (called blood doping) to increase RBC counts and subsequently increase oxygen delivery to tissues throughout the body. EPO is a banned substance in most organized sports, but it is also used medically in the treatment of certain anemia, specifically those triggered by certain types of cancer, and other disorders in which increased erythrocyte counts and oxygen levels are desirable.
Thrombopoietin, another glycoprotein hormone, is produced by the liver and kidneys. It triggers the development of megakaryocytes into platelets.
Cytokines are glycoproteins secreted by a wide variety of cells, including red bone marrow, leukocytes, macrophages, fibroblasts, and endothelial cells. They act locally as autocrine or paracrine factors, stimulating the proliferation of progenitor cells and helping to stimulate both nonspecific and specific resistance to disease. There are two major subtypes of cytokines known as colony-stimulating factors and interleukins.
Colony-stimulating factors (CSFs) are glycoproteins that act locally, as autocrine or paracrine factors. Some trigger the differentiation of myeloblasts into granular leukocytes, namely, neutrophils, eosinophils, and basophils. These are referred to as granulocyte CSFs. A different CSF induces the production of monocytes, called monocyte CSFs. Both granulocytes and monocytes are stimulated by GM-CSF; granulocytes, monocytes, platelets, and erythrocytes are stimulated by multi-CSF. Synthetic forms of these hormones are often administered to patients with various forms of cancer who are receiving chemotherapy to revive their WBC counts.
Interleukins are another class of cytokine signaling molecules important in hemopoiesis. They were initially thought to be secreted uniquely by leukocytes and to communicate only with other leukocytes, and were named accordingly, but are now known to be produced by a variety of cells including bone marrow and endothelium. Researchers now suspect that interleukins may play other roles in body functioning, including differentiation and maturation of cells, producing immunity and inflammation. To date, more than a dozen interleukins have been identified, with others likely to follow. They are generally numbered IL-1, IL-2, IL-3, etc.
Source: CNX OpenStax
Additional Materials (7)
Hemopoiesis / Hematopoiesis | How Blood is Made
Video by Interactive Biology/YouTube
This Is How Your Body Makes New Blood
Video by Seeker/YouTube
Hematopoiesis | Hematologic System Diseases | NCLEX-RN | Khan Academy
Video by khanacademymedicine/YouTube
Hematopoiesis - Formation of Blood Cells, Animation
Video by Alila Medical Media/YouTube
Blood cell production in the bone marrow| hematopoiesis animation.
Video by RedMedBd/YouTube
Kidney and Stem Cell Creating Red Blood Cell
Kidney and Stem Cell Creating Red Blood Cell : We are used to thinking of our kidneys mostly as hardworking filters that rid our bodies of wastes and excess water. But the kidneys are also constantly monitoring and adjusting levels of key substances in the blood, depending on what the body needs. Specialized cells in the kidney that are very sensitive to low oxygen levels, for example, produce a hormone called erythropoietin (EPO), which in turn promotes the production of red blood cells in the bone marrow. The boost in red blood cells increases the oxygen-carrying capacity of the blood.
Image by TheVisualMD
Hematopoietic System of Bone Marrow
Hemopoiesis is the proliferation and differentiation of the formed elements of blood.
Image by CNX Openstax
8:03
Hemopoiesis / Hematopoiesis | How Blood is Made
Interactive Biology/YouTube
8:19
This Is How Your Body Makes New Blood
Seeker/YouTube
10:08
Hematopoiesis | Hematologic System Diseases | NCLEX-RN | Khan Academy
khanacademymedicine/YouTube
4:19
Hematopoiesis - Formation of Blood Cells, Animation
Alila Medical Media/YouTube
2:48
Blood cell production in the bone marrow| hematopoiesis animation.
RedMedBd/YouTube
Kidney and Stem Cell Creating Red Blood Cell
TheVisualMD
Hematopoietic System of Bone Marrow
CNX Openstax
Blood Plasma
Hypercholesterolemia
Image by DiverDave
Hypercholesterolemia
two bags of fresh frozen plasma. The bag on the left was obtained from a patient with hypercholesterolemia.
Image by DiverDave
Blood Plasma
Like other fluids in the body, plasma is composed primarily of water: In fact, it is about 92 percent water. Dissolved or suspended within this water is a mixture of substances, most of which are proteins. There are literally hundreds of substances dissolved or suspended in the plasma, although many of them are found only in very small quantities.
Plasma Proteins
About 7 percent of the volume of plasma—nearly all that is not water—is made of proteins. These include several plasma proteins (proteins that are unique to the plasma), plus a much smaller number of regulatory proteins, including enzymes and some hormones. The major components of plasma are summarized in image.
The three major groups of plasma proteins are as follows:
Albumin is the most abundant of the plasma proteins. Manufactured by the liver, albumin molecules serve as binding proteins—transport vehicles for fatty acids and steroid hormones. Recall that lipids are hydrophobic; however, their binding to albumin enables their transport in the watery plasma. Albumin is also the most significant contributor to the osmotic pressure of blood; that is, its presence holds water inside the blood vessels and draws water from the tissues, across blood vessel walls, and into the bloodstream. This in turn helps to maintain both blood volume and blood pressure. Albumin normally accounts for approximately 54 percent of the total plasma protein content, in clinical levels of 3.5–5.0 g/dL blood.
The second most common plasma proteins are the globulins. A heterogeneous group, there are three main subgroups known as alpha, beta, and gamma globulins. The alpha and beta globulins transport iron, lipids, and the fat-soluble vitamins A, D, E, and K to the cells; like albumin, they also contribute to osmotic pressure. The gamma globulins are proteins involved in immunity and are better known as an antibodies or immunoglobulins. Although other plasma proteins are produced by the liver, immunoglobulins are produced by specialized leukocytes known as plasma cells. (Seek additional content for more information about immunoglobulins.) Globulins make up approximately 38 percent of the total plasma protein volume, in clinical levels of 1.0–1.5 g/dL blood.
The least abundant plasma protein is fibrinogen. Like albumin and the alpha and beta globulins, fibrinogen is produced by the liver. It is essential for blood clotting, a process described later in this chapter. Fibrinogen accounts for about 7 percent of the total plasma protein volume, in clinical levels of 0.2–0.45 g/dL blood.
Other Plasma Solutes
In addition to proteins, plasma contains a wide variety of other substances. These include various electrolytes, such as sodium, potassium, and calcium ions; dissolved gases, such as oxygen, carbon dioxide, and nitrogen; various organic nutrients, such as vitamins, lipids, glucose, and amino acids; and metabolic wastes. All of these nonprotein solutes combined contribute approximately 1 percent to the total volume of plasma.
Source: CNX OpenStax
Additional Materials (6)
7 Fun Facts About Your Blood You Didn't Know
Video by Interactive Biology/YouTube
Plasma
Video by Canadian Blood Services/YouTube
Blood Plasma
Video by Ray Cinti/YouTube
The Power of Plasma Donation Animation
Video by Plasma Protein Therapeutics Association/YouTube
Two units of platelets and two units of plasma from an hour and a half of apheresis
Pete, this used to be in you!
Two units of platelets and two units of plasma from an hour and a half of apheresis at the Stanford Blood Center.
The apheresis machine pulls blood out of your arm, sends it through a centrifuge separating it by densities. The machine can pull the components that are needed, and return the parts that aren't. In this case, all my red blood cells were returned.
In this case, because I'm AB+ and cytomegalovirus negative (some mild virus that like 60% of the adult population latently has), my platelets and plasma are particularly helpful for immuno-compromised patients, like babies, burn victims, and AIDS patients.
And the best thing? Stanford Blood Center has wifi, so I could one-handedly email the whole time. Sweet!
Image by Peter Kazanjy
Convalescent plasma collected during COVID-19 pandemic
Convalescent plasma collected at a blood donor center during COVID-19 pandemic.
Image by Whoisjohngalt/Wikimedia
4:31
7 Fun Facts About Your Blood You Didn't Know
Interactive Biology/YouTube
5:42
Plasma
Canadian Blood Services/YouTube
8:51
Blood Plasma
Ray Cinti/YouTube
2:41
The Power of Plasma Donation Animation
Plasma Protein Therapeutics Association/YouTube
Two units of platelets and two units of plasma from an hour and a half of apheresis
Peter Kazanjy
Convalescent plasma collected during COVID-19 pandemic
Whoisjohngalt/Wikimedia
Blood Doping
World Anti-Doping Agency launches investigation
Image by Marco Verch Professional Photographer
World Anti-Doping Agency launches investigation
Image by Marco Verch Professional Photographer
Everyday Connection: Blood Doping
In its original intent, the term blood doping was used to describe the practice of injecting by transfusion supplemental RBCs into an individual, typically to enhance performance in a sport. Additional RBCs would deliver more oxygen to the tissues, providing extra aerobic capacity, clinically referred to as VO2 max. The source of the cells was either from the recipient (autologous) or from a donor with compatible blood (homologous). This practice was aided by the well-developed techniques of harvesting, concentrating, and freezing of the RBCs that could be later thawed and injected, yet still retain their functionality. These practices are considered illegal in virtually all sports and run the risk of infection, significantly increasing the viscosity of the blood and the potential for transmission of blood-borne pathogens if the blood was collected from another individual.
With the development of synthetic EPO in the 1980s, it became possible to provide additional RBCs by artificially stimulating RBC production in the bone marrow. Originally developed to treat patients suffering from anemia, renal failure, or cancer treatment, large quantities of EPO can be generated by recombinant DNA technology. Synthetic EPO is injected under the skin and can increase hematocrit for many weeks. It may also induce polycythemia and raise hematocrit to 70 or greater. This increased viscosity raises the resistance of the blood and forces the heart to pump more powerfully; in extreme cases, it has resulted in death. Other drugs such as cobalt II chloride have been shown to increase natural EPO gene expression. Blood doping has become problematic in many sports, especially cycling. Lance Armstrong, winner of seven Tour de France and many other cycling titles, was stripped of his victories and admitted to blood doping in 2013.
Source: CNX OpenStax
Additional Materials (7)
Blood Doping - Mayo Clinic
Video by Mayo Clinic/YouTube
The Science of Doping: Revving Up Blood to Improve Performance
Video by Wall Street Journal/YouTube
The Disturbing Truth About Doping in Sports
Video by Bloomberg Quicktake/YouTube
What is Doping? Lance Armstrong's Secrets!
Video by Seeker/YouTube
Spitting in the Soup: Inside the Dirty Game of Doping in Sports with Mark Johnson
Video by University of California Television (UCTV)/YouTube
The Dark Side: Secrets of the Sports Dopers l Al Jazeera Investigations
Video by Al Jazeera English/YouTube
What Do Performance-Enhancing Drugs Do To Your Body?
Video by Life Noggin/YouTube
2:14
Blood Doping - Mayo Clinic
Mayo Clinic/YouTube
1:46
The Science of Doping: Revving Up Blood to Improve Performance
Wall Street Journal/YouTube
2:13
The Disturbing Truth About Doping in Sports
Bloomberg Quicktake/YouTube
4:55
What is Doping? Lance Armstrong's Secrets!
Seeker/YouTube
58:02
Spitting in the Soup: Inside the Dirty Game of Doping in Sports with Mark Johnson
University of California Television (UCTV)/YouTube
49:13
The Dark Side: Secrets of the Sports Dopers l Al Jazeera Investigations
Al Jazeera English/YouTube
3:15
What Do Performance-Enhancing Drugs Do To Your Body?
Life Noggin/YouTube
Phlebotomy
Clenching the fist during blood drawing
Image by U.S. Air Force photo by Staff Sgt. Taylor White
Clenching the fist during blood drawing
A patient clenches theirfist during a pre-deployment blood drawing at Beale Air Force Base, California, Sept. 24, 2019. Pre-deployment medical appointments are standard to ensure proper care of all Airmen. (U.S. Air Force photo by Staff Sgt. Taylor White)
Image by U.S. Air Force photo by Staff Sgt. Taylor White
Career Connection: Phlebotomy and Medical Lab Technology
Phlebotomists are professionals trained to draw blood (phleb- = “a blood vessel”; -tomy = “to cut”). When more than a few drops of blood are required, phlebotomists perform a venipuncture, typically of a surface vein in the arm. They perform a capillary stick on a finger, an earlobe, or the heel of an infant when only a small quantity of blood is required. An arterial stick is collected from an artery and used to analyze blood gases. After collection, the blood may be analyzed by medical laboratories or perhaps used for transfusions, donations, or research. While many allied health professionals practice phlebotomy, the American Society of Phlebotomy Technicians issues certificates to individuals passing a national examination, and some large labs and hospitals hire individuals expressly for their skill in phlebotomy.
Medical or clinical laboratories employ a variety of individuals in technical positions:
Medical technologists (MT), also known as clinical laboratory technologists (CLT), typically hold a bachelor’s degree and certification from an accredited training program. They perform a wide variety of tests on various body fluids, including blood. The information they provide is essential to the primary care providers in determining a diagnosis and in monitoring the course of a disease and response to treatment.
Medical laboratory technicians (MLT) typically have an associate’s degree but may perform duties similar to those of an MT.
Medical laboratory assistants (MLA) spend the majority of their time processing samples and carrying out routine assignments within the lab. Clinical training is required, but a degree may not be essential to obtaining a position.
Send this HealthJournal to your friends or across your social medias.
Blood
Blood has many functions in your body. Blood tests help doctors check for certain diseases and conditions. Learn about blood functions and characteristics.