Mutations in multiple genes have been found to cause recurrent hydatidiform mole. About 55 percent of cases of this condition are caused by NLRP7 gene mutations and about 5 percent of cases are caused by KHDC3L gene mutations. Mutations in other genes each account for a small percentage of cases.
The proteins produced from the NLRP7 and KHDC3L genes are critical for normal egg cell (oocyte) development, which impacts embryonic development. Within oocytes, the exact role of NLRP7 and KHDC3L proteins are not known. However, they are thought to play a role in a phenomenon known as genomic imprinting. Through genomic imprinting certain genes are turned off (inactivated) based on which parent the copy of the gene came from. For most genes, both copies of the gene (one copy inherited from each parent) are active in all cells. However, for a small subset of genes, only one of the two copies is active and the other is turned off. For some of these genes, the copy from the father is normally active, while for others, the copy from the mother is normally active.
NLRP7 or KHDC3L gene mutations result in the production of proteins with impaired function. As a result, oocytes do not develop normally. A pregnancy that results from an abnormal oocyte cannot develop properly, resulting in recurrent hydatidiform mole. NLRP7 or KHDC3L gene mutations can also prevent proper imprinting of multiple genes that contribute to a developing embryo, leading to abnormal gene activity (expression). It is not clear if problems with imprinting also contribute to the development of a hydatidiform mole. In women with NLRP7 or KHDC3L gene mutations, a hydatidiform mole will develop in every pregnancy that occurs with her egg cells.
A small number of cases of recurrent hydatidiform mole have been found to be caused by mutations in genes that play important roles in the production of oocytes and sperm cells. The proteins produced from these genes are involved in the normal process of exchanging genetic material between chromosomes in preparation for cell division during oocyte and sperm cell production. These proteins are needed to make breaks in the chromosomes so that genetic information can be exchanged.
Mutations in these genes prevent the normal function of the proteins involved in the exchange of genetic material. Without the exchange of genetic material, cell division is often stopped. In affected women, this can lead to the production of abnormal oocytes that do not contain chromosomes. When a normal sperm cell fertilizes one of these oocytes, the resulting embryo has only one set of chromosomes. Because the embryo has no genes from the mother, the pregnancy cannot develop normally, resulting in a hydatidiform mole. In women with these rare gene mutations, every pregnancy that occurs with her egg cells will result in a hydatidiform mole or pregnancy loss (miscarriage).
In some cases of recurrent hydatidiform mole, no mutations in any of the genes associated with the condition have been identified. In these instances, the cause of the condition is unknown.