Determining the need for surgery is at times controversial. In 2005, a classification system was introduced to provide more uniformity in management and provide simple treatment recommendations. The Thoracolumbar Injury Classification and Severity (TLICS) Scale uses the integrity of the PLC, injury morphology, and neurological status of the patient to provide a score (one to ten) that can guide intervention: a score less than four leads to non-surgical treatment, greater than four suggests surgical treatment, and a score of four being managed either surgically or nonsurgically depending on the physicians' clinical acumen. Of course, these are general guidelines, predominantly for trauma patients, and each case should be evaluated carefully. Interestingly, newer studies have shown that historical considerations such as loss of vertebral body height, segmental kyphosis, and canal compromise, do not correlate with the need for surgery in neurologically intact patients. Of note, currently, there have been no randomized trials evaluating surgery versus brace treatment in “unstable” compression fractures.
Orthosis/bracing modalities accomplish conservative management for a period of four to 12 weeks. Discontinuation of the bracing can be considered when there is radiographic evidence of healing, and the patient no longer is tender over the fracture site. While midthoracic and upper lumbar VCFs can be treated with a thoracolumbosacral orthosis (TLSO), lower lumbar VCFs may need a lumbosacral corset for adequate immobilization. Bracing is not benign and can be difficult in a barrel-chested patient, a patient with pulmonary compromise or in an obese patient. These factors must be taken into consideration. Analgesic medications and bracing can be poorly tolerated in some patients. If bracing is not effective or poorly tolerated, the physician may alternatively consider percutaneous procedures for stabilization of the fracture.
Surgical options are largely dependent on fracture characteristics and neurologic injury. Rarely would compression fractures require instrumented stabilization. Cement augmentation in the form of vertebroplasty or kyphoplasty is the common surgical considerations for these patients. Initially developed for spinal hemangiomas, vertebroplasty is a minimally invasive procedure during which cement is injected into the vertebral body through the pedicle. Spinal alignment is improved during the procedure by supine positioning with extension; the vertebroplasty itself is not meant to restore alignment. Kyphoplasty is a procedure in which the wedge-shaped vertebra is first reduced to improve the residual local kyphotic alignment through inflation of a balloon; once vertebral height is restored, cement is injected. For patients that have failed a trial of conservative treatment or are hospitalized due to pain and decreased function associated with a VCF, cement augmentation should be considered. Recent randomized controlled trials have shown kyphoplasties allowing for significantly more rapid improvement in the quality of life, function, pain, and mobility.
Differential Diagnosis
When evaluating a patient with back pain and a suspected VCF, several other diagnoses must be excluded. Prior to imaging, one must think of nonspinal etiologies for the pain such as musculoskeletal, pulmonary, abdominal, renal or vascular depending on the location of the pain. If a vertebral body fracture is identified on imaging, a close inspection of the posterior vertebral body cortex and of the posterior spinal column structures must be performed to rule out a more unstable fracture pattern.
Prognosis
In elderly patients with osteoporotic compression fractures, there is an increase in mortality compared with age-matched controlled. Survival rates have been cited to be 53.9% at 3 years, 30.9% at 5 years and 10.5% at 7 years.
Complications
Nonoperative management of these fractures can lead to continued back pain and progression of a kyphotic deformity. There is a high likelihood of patients having a progression of vertebral body collapse in addition to having additional fractures in the future.
With cement augmentation, there have been several complications identified. There have been case reports of neurologic injury during the procedure, but this a rare occurrence. The increased stiffness of a vertebral body filled with cement causes increased stress on the adjacent levels which can lead to secondary fractures. As mentioned above, however, the patients in this population are often at risk for this regardless of operative treatment. Most patients will experience cement extravasation, but this does not seem to have much clinical significance. Embolization of the cement occurs rarely, but it can lead to devastating complications such as pulmonary embolism or stroke.
Pearls and Other Issues
The most important consideration when evaluating fractures of the spine should be the neurologic exam as compression of the spinal canal may alter treatment options. Regarding a kyphoplasty treatment for compression fractures, several contraindications should be remembered. These include current neurologic compromise, burst fractures (fractures of the posterior vertebral body wall), spine infections, current sepsis, or underlying bleeding diatheses. Not addressed above are patients with diffuse idiopathic skeletal hyperostosis (DISH) and ankylosing spondylitis (AS). Both of these result in brittle spinal columns and a fracture of any type should be considered unstable and require CT, MRI, and potentially surgery.
Enhancing Healthcare Team Outcomes
Patients with vertebral fractures are often managed by an interprofessional team that includes an orthopedic nurse specialist, emergency department physician, neurologist, radiologist, neurosurgeon, physical therapist, and an intensivist. All patients with severe injuries and neurological deficits are monitored in the ICU by trauma nurses. Complications should be discussed and reported to the team. Mild injuries may be managed with conservative care but severe injuries with neurological deficits may require surgery. Due to the pain involved, the pharmacist should assist with pain management medication selection and monitoring for clinical effect. The prognosis of these patients is dependent on age, type and extent of the injury, other associated injuries, the presence of neurological deficits and the need for mechanical ventilation.