Acute Myeloid Leukemia (AML) is a cancer of the blood cells. In AML, the bone marrow makes abnormal myeloblasts (a type of white blood cell), red blood cells, or platelets. When the abnormal cells crowd out the healthy cells, it can lead to infection, anemia, and easy bleeding. AML usually gets worse quickly if it is not treated. Read more.
Zara strong, after her AML diagnosis
Image by U.S. Air Force photo by Staff Sgt. Ceaira Tinsley
About
Zara, diagnosed with acute myeloid leukemia
Image by U.S. Air Force photo by Staff Sgt. Ceaira Tinsley
Zara, diagnosed with acute myeloid leukemia
Zara, daughter of Tech. Sgt. Jean “Jay” Fleurantin, 723d Aircraft Maintenance Squadron electronic warfare technician, prepares for her first day of school since being diagnosed with Acute Myeloid Leukemia, Jan. 9, 2018, in Hahira, Ga. Zara was diagnosed with Acute Myeloid Leukemia in January 2017 and after numerous unsuccessful rounds of chemotherapy, Jay donated bone marrow as a last resort and in May 2017 the doctors announced Zara’s cancer was in full remission. (U.S. Air Force photo by Staff Sgt. Ceaira Tinsley)
Image by U.S. Air Force photo by Staff Sgt. Ceaira Tinsley
What Is Acute Myeloid Leukemia?
KEY POINTS
Adult acute myeloid leukemia (AML) is a type of cancer in which the bone marrow makes a large number of abnormal blood cells.
Leukemia may affect red blood cells, white blood cells, and platelets.
There are different subtypes of AML.
Smoking, previous chemotherapy treatment, and exposure to radiation may increase the risk of AML.
Signs and symptoms of AML include fever, feeling tired, and easy bruising or bleeding.
Tests that examine the blood and bone marrow are used to diagnose AML.
After AML has been diagnosed, tests are done to find out if the cancer has spread to other parts of the body.
Some people decide to get a second opinion.
Certain factors affect prognosis (chance of recovery) and treatment options.
Adult acute myeloid leukemia (AML) is a type of cancer in which the bone marrow makes a large number of abnormal blood cells.
Acute myeloid leukemia (AML) is a cancer of the blood and bone marrow. It is the most common type of acute leukemia in adults. This type of cancer usually gets worse quickly if it is not treated. AML is also called acute myelogenous leukemia and acute nonlymphocytic leukemia.
Leukemia may affect red blood cells, white blood cells, and platelets.
Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A lymphoid stem cell becomes a white blood cell.
A myeloid stem cell becomes one of three types of mature blood cells:
Red blood cells that carry oxygen and other substances to all tissues of the body.
Granulocytes, which are white blood cells that help fight infection and disease.
Platelets that form blood clots to stop bleeding.
In AML, the myeloid stem cells usually become a type of immature white blood cell called myeloblasts (or myeloid blasts). The myeloblasts in AML are abnormal and do not become healthy white blood cells. Sometimes in AML, too many stem cells become abnormal red blood cells or platelets. These abnormal white blood cells, red blood cells, or platelets are also called leukemia cells or blasts. Leukemia cells can build up in the bone marrow and blood so there is less room for healthy white blood cells, red blood cells, and platelets. When this happens, infection, anemia, or easy bleeding may occur.
The leukemia cells can spread outside the blood to other parts of the body, including the central nervous system (brain and spinal cord), skin, and gums. Sometimes leukemia cells form a solid tumor called a myeloid sarcoma. Myeloid sarcoma is also called extramedullary myeloid tumor, granulocytic sarcoma, or chloroma.
There are different subtypes of AML.
Most AML subtypes are based on how mature (developed) the cancer cells are at the time of diagnosis, and how different they are from normal cells.
Acute promyelocytic leukemia (APL) is a subtype of AML. This leukemia occurs when genes on chromosome 15 switch places with some genes on chromosome 17, and an abnormal gene called PML::RARA is made. The PML::RARA gene sends a message that stops promyelocytes (a type of white blood cell) from maturing. Problems with severe bleeding and blood clots may occur. This is a serious health problem that needs treatment as soon as possible. APL usually occurs in middle-aged adults.
Source: PDQ® Adult Treatment Editorial Board. PDQ Acute Myeloid Leukemia Treatment. Bethesda, MD: National Cancer Institute.
Diagram showing cancer cells spreading into the blood stream
Diagram showing cancer cells spreading into the blood stream
Image by Cancer Research UK
Zara strong, after her AML diagnosis
Zara, daughter of Tech. Sgt. Jean “Jay” Fleurantin, 723d Aircraft Maintenance Squadron electronic warfare technician, prepares for her first day of school since being diagnosed with Acute Myeloid Leukemia, Jan. 9, 2018, in Hahira, Ga. Zara was diagnosed with Acute Myeloid Leukemia in January 2017 and after numerous unsuccessful rounds of chemotherapy, Jay donated bone marrow as a last resort and in May 2017 the doctors announced Zara’s cancer was in full remission. (U.S. Air Force photo by Staff Sgt. Ceaira Tinsley)
Image by U.S. Air Force photo by Staff Sgt. Ceaira Tinsley
Acute Myeloid Leukemia AML Animation
Video by Medical.Animation.Videos.Library/YouTube
Acute Myeloid Leukemia Symptoms and Treatment of AML Video About com
Video by Mohammed Dhaw/YouTube
Acute Myeloid Leukemia.flv
Video by MIUelearning/YouTube
What is Acute Myeloid Leukemia? (Excess Immature White Blood Cells)
Video by healthery/YouTube
Acute Myeloid Leukemia Ep. 1: Needle in a Haystack | MedscapeTV
AI-Driven Targeted Therapy in Acute Myeloid Leukemia
Penn Medicine/YouTube
2:46
What is Acute Myelogenous Leukemia? (Excess Immature White Blood Cells)
healthery/YouTube
4:33
What is leukemia? - Danilo Allegra and Dania Puggioni
TED-Ed/YouTube
2:50
Chemo-free approach in acute promyelocytic leukemia (APL) treatment
VJHemOnc – Video Journal of Hematological Oncology/YouTube
2:29
New trends in the management of leukemia
VJHemOnc – Video Journal of Hematological Oncology/YouTube
1:27
What Is AML?
Leukemia & Lymphoma Society/YouTube
18:12
Finding the causes of leukemia
UC Berkeley Events/YouTube
Risk Factors
Radiation Sickness
Image by BruceBlaus
Radiation Sickness
Radiation Sickness
Image by BruceBlaus
What Increases the Risk of Acute Myeloid Leukemia?
Smoking, previous chemotherapy treatment, and exposure to radiation may affect the risk of AML.
Anything that increases a person's chance of getting a disease is called a risk factor. Not every person with one or more of these risk factors will develop AML, and it can develop in people who don't have any known risk factors. Talk with your doctor if you think you may be at risk. Possible risk factors for AML include the following:
Being male.
Older age.
Smoking.
Having had treatment with chemotherapy or radiation therapy in the past.
Being exposed to radiation in the environment (such as nuclear radiation) or to the chemical benzene.
Having a personal history of a blood disorder such as myelodysplastic syndrome.
Having certain syndromes or inherited disorders.
Source: PDQ® Adult Treatment Editorial Board. PDQ Acute Myeloid Leukemia Treatment. Bethesda, MD: National Cancer Institute.
Additional Materials (5)
Occupational Health for Healthcare Providers
The new supplementary ionizing radiation warning symbol launched on 15 February 2007 by the International Atomic Energy Agency (IAEA) and the International Organization for Standardization (ISO). Contains radiating waves, a skull and crossbones and a running person. Note: Will only replace the standard yellow radiation trefoil symbol in certain specific limited circumstances.
Image by historicair
External Beam Radiation Therapy for Cancer
Illustration of patient in external beam radiation therapy machine.
Image by National Cancer Institute (NCI)
Acute Myeloid Leukemia -- Risk Factors
Video by Cancer GPS/YouTube
Acute leukemia | Hematologic System Diseases | NCLEX-RN | Khan Academy
Video by khanacademymedicine/YouTube
Acute Myeloid Leukemia.flv
Video by MIUelearning/YouTube
Occupational Health for Healthcare Providers
historicair
External Beam Radiation Therapy for Cancer
National Cancer Institute (NCI)
1:21
Acute Myeloid Leukemia -- Risk Factors
Cancer GPS/YouTube
9:42
Acute leukemia | Hematologic System Diseases | NCLEX-RN | Khan Academy
khanacademymedicine/YouTube
2:04
Acute Myeloid Leukemia.flv
MIUelearning/YouTube
Symptoms
Fatigue
Image by TheVisualMD
Fatigue
Fatigue
Image by TheVisualMD
What Are the Signs and Symptoms of Acute Myeloid Leukemia?
Signs and symptoms of AML include fever, feeling tired, and easy bruising or bleeding.
The early signs and symptoms of AML may be like those caused by the flu or other common diseases. Check with your doctor if you have any of the following:
Weakness.
Fever.
Infection.
Paleness or loss of normal skin color.
Bleeding.
Less common signs or symptoms may be caused by clusters of leukemia cells in the central nervous system (CNS) or testicles, or a tumor of myeloid cells called a chloroma.
Symptoms of acute leukemia often develop between 4 and 6 weeks before diagnosis.
Source: PDQ® Adult Treatment Editorial Board. PDQ Acute Myeloid Leukemia Treatment. Bethesda, MD: National Cancer Institute.
Additional Materials (1)
Looking for AML symptoms
Video by MD Anderson Cancer Center/YouTube
0:54
Looking for AML symptoms
MD Anderson Cancer Center/YouTube
Diagnosis
Bone Marrow Biopsy
Image by Blausen Medical Communications, Inc.
Bone Marrow Biopsy
Bone Marrow Biopsy
Image by Blausen Medical Communications, Inc.
How Is Acute Myeloid Leukemia Diagnosed?
Tests that examine the blood and bone marrow are used to diagnose AML.
In addition to asking about your personal and family health history and doing a physical exam, your doctor may perform the following tests and procedures:
Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following:
The number of red blood cells, white blood cells, and platelets.
The amount of hemoglobin (the protein that carries oxygen) in the red blood cells.
The portion of the sample made up of red blood cells.
Peripheral blood smear: A procedure in which a sample of blood is checked for blast cells, the number and kinds of white blood cells, the number of platelets, and changes in the shape of blood cells.
Flow cytometry: A laboratory test that measures the number of cells in a sample, the percentage of live cells in a sample, and certain characteristics of the cells, such as size, shape, and the presence of tumor (or other) markers on the cell surface. The cells from a sample of a patient’s blood, bone marrow, or other tissue are stained with a fluorescent dye, placed in a fluid, and then passed one at a time through a beam of light. The test results are based on how the cells that were stained with the fluorescent dye react to the beam of light. This test is used to help diagnose and manage certain types of cancers, such as leukemia and lymphoma.
Bone marrow aspiration and biopsy: The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for signs of cancer.
Tumor biopsy: A biopsy of a tumor made up of leukemia cells, also known as a myeloid sarcoma (chloroma), may be done.
Cytogenetic analysis: A laboratory test in which the chromosomes of cells in a sample of blood or bone marrow are counted and checked for any changes, such as broken, missing, rearranged, or extra chromosomes. Changes in certain chromosomes may be a sign of cancer. Cytogenetic analysis is used to help diagnose cancer, plan treatment, or find out how well treatment is working. Other tests, such as fluorescence in situ hybridization (FISH), may also be done to look for certain changes in the chromosomes.
Molecular testing: A laboratory test to check for certain genes, proteins, or other molecules in a sample of blood or bone marrow. Molecular tests also check for certain changes in a gene or chromosome that may cause or affect the chance of developing AML. A molecular test may be used to help plan treatment, find out how well treatment is working, or make a prognosis.
Immunophenotyping: A laboratory test that uses antibodies to identify cancer cells based on the types of antigens or markers on the surface of the cells. This test is used to help diagnose specific types of leukemia. For example, a cytochemistry study may test the cells in a sample of tissue using chemicals (dyes) to look for certain changes in the sample. A chemical may cause a color change in one type of leukemia cell but not in another type of leukemia cell.
Reverse transcription–polymerase chain reaction test (RT–PCR): A laboratory test in which the amount of a genetic substance called mRNA made by a specific gene is measured. An enzyme called reverse transcriptase is used to convert a specific piece of RNA into a matching piece of DNA, which can be amplified (made in large numbers) by another enzyme called DNA polymerase. The amplified DNA copies help tell whether a specific mRNA is being made by a gene. RT-PCR can be used to check the activation of certain genes that may indicate the presence of cancer cells. This test may be used to look for certain changes in a gene or chromosome, which may help diagnose cancer. This test is used to diagnose certain types of AML including acute promyelocytic leukemia (APL).
Source: PDQ® Adult Treatment Editorial Board. PDQ Acute Myeloid Leukemia Treatment. Bethesda, MD: National Cancer Institute.
Additional Materials (6)
Bone Marrow Biopsy
Diagram showing a bone marrow biopsy.
Image by Cancer Research UK / Wikimedia Commons
Polymerase Chain Reaction (PCR)
Polymerase chain reaction (PCR) is a technique used to "amplify" small segments of DNA.
Image by National Human Genome Research Institute (NHGRI)
RNA Transcription
The process of protein synthesis begins within the nucleus of a cell, where DNA resides (purple). The first step is to reveal the blueprint. In the process called transcription, general transcription factors and RNA polymerase (orange) bind to the promoter region of a DNA nucleotide. The DNA helix is first unwound or "unzipped" to divulge the instructions for assembling a particular type of protein molecule. The instructions are then copied, or transcribed, to mRNA (messenger RNA), a snake-like strand that will carry the blueprint off for production (blue). When transcription is complete, the mRNA exits the cell nucleus with its duplicate of the blueprint and shuttles off to the protein-making factory, the ribosome.
Image by TheVisualMD
PCR tubes
Photo of a strip of PCR tubes, each tube contains a 1000uL (1mL) reaction.
Image by Madprime
Acute Myeloid Leukemia Ep. 1: Needle in a Haystack | MedscapeTV
Video by Medscape/YouTube
Acute Myeloid Leukemia Symptoms and Treatment of AML Video About com
Video by Mohammed Dhaw/YouTube
Bone Marrow Biopsy
Cancer Research UK / Wikimedia Commons
Polymerase Chain Reaction (PCR)
National Human Genome Research Institute (NHGRI)
RNA Transcription
TheVisualMD
PCR tubes
Madprime
6:51
Acute Myeloid Leukemia Ep. 1: Needle in a Haystack | MedscapeTV
Medscape/YouTube
4:11
Acute Myeloid Leukemia Symptoms and Treatment of AML Video About com
Mohammed Dhaw/YouTube
Immunophenotyping
Immunophenotyping Test
Also called: Lymphocyte Subtyping, Lymphocyte Immunophenotyping, Immunophenotype Profile
Immunophenotyping is a test that detects the presence or absence of white blood cell (WBC) antigens in a sample of blood, bone marrow or lymph node cells. The test is used in basic research and to help diagnose and classify diseases, such as specific types of leukemia and lymphoma.
Immunophenotyping Test
Also called: Lymphocyte Subtyping, Lymphocyte Immunophenotyping, Immunophenotype Profile
Immunophenotyping is a test that detects the presence or absence of white blood cell (WBC) antigens in a sample of blood, bone marrow or lymph node cells. The test is used in basic research and to help diagnose and classify diseases, such as specific types of leukemia and lymphoma.
{"label":"Immunophenotype Profile Reference Range","scale":"lin","step":0.25,"hideunits":true,"items":[{"flag":"normal","label":{"short":"Normal","long":"Normal","orientation":"horizontal"},"values":{"min":0,"max":1},"text":"No significant immunophenotypic abnormality detected.","conditions":[]},{"flag":"abnormal","label":{"short":"Abnormal","long":"Abnormal","orientation":"horizontal"},"values":{"min":1,"max":2},"text":"The markers that are present on the cells as detected by immunophenotyping will help characterize the abnormal cells present.","conditions":["Acute myeloid leukemia","Acute lymphoblastic leukemia","Chronic lymphocytic or myelocytic leukemias","B-cell and T-cell non-Hodgkin lymphomas","Erythroleukemia (RBC leukemia)","Megaloblastic leukemia","Multiple myeloma"]}],"value":0.5}[{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
Your result is Normal.
No significant immunophenotypic abnormality detected.
Related conditions
Immunophenotyping | NCI's Dictionary of Cancer Terms [accessed on Feb 19, 2022]
Blood Work | How This Provides Clues On Your Health | Leukemia & Lymphoma Society® (LLS) [accessed on Feb 18, 2022]
Immunophenotyping | Labcorp [accessed on Feb 19, 2022]
480260: Leukemia/Lymphoma Immunophenotyping Profile | Labcorp [accessed on Feb 19, 2022]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (3)
Burkitts lymphoma
Burkitt's lymphoma histology image
Image by Ed Uthman, MD.
Immunophenotyping | Flow Cytometry & Immunophenotyping Test |
Video by BMH learning/YouTube
Immunophenotyping made easy: streamline your bench
Video by Miltenyi Biotec/YouTube
Burkitts lymphoma
Ed Uthman, MD.
2:21
Immunophenotyping | Flow Cytometry & Immunophenotyping Test |
BMH learning/YouTube
1:51
Immunophenotyping made easy: streamline your bench
PCR (polymerase chain reaction) tests identify genetic material in a sample to diagnose an infectious disease or a genetic condition. PCR tests are also used to detect cancer and monitor response to treatment. The tests are fast and highly accurate.
PCR (polymerase chain reaction) tests identify genetic material in a sample to diagnose an infectious disease or a genetic condition. PCR tests are also used to detect cancer and monitor response to treatment. The tests are fast and highly accurate.
{"label":"PCR Reference Range","scale":"lin","step":0.25,"hideunits":true,"items":[{"flag":"negative","label":{"short":"Negative","long":"Negative","orientation":"horizontal"},"values":{"min":0,"max":1},"text":"A negative PCR result means that the DNA or RNA of the pathogen (disease-causing organism) or abnormal cells where not found in your sample.","conditions":[]},{"flag":"positive","label":{"short":"Positive","long":"Positive","orientation":"horizontal"},"values":{"min":1,"max":2},"text":"A positive PCR result means that the DNA or RNA of the pathogen (disease-causing organism) or abnormal cells where found in your sample.","conditions":["COVID-19","Lyme disease","Pertussis","HPV","CMV","Gonorrhea","Chlamydia","Cancer"]}],"value":0.5}[{"negative":0},{"positive":0}]
Use the slider below to see how your results affect your
health.
Your result is Negative.
A negative PCR result means that the DNA or RNA of the pathogen (disease-causing organism) or abnormal cells where not found in your sample.
Related conditions
PCR (polymerase chain reaction) tests are a fast, highly accurate way to diagnose certain infectious diseases and genetic changes. The tests work by finding the DNA or RNA of a pathogen (disease-causing organism) or abnormal cells in a sample.
DNA is the genetic material that contains instructions and information for all living things.
RNA is another type of genetic material. It contains information that has been copied from DNA and is involved in making proteins.
Most viruses and other pathogens contain DNA or RNA.
Unlike many other tests, PCR tests can find evidence of disease in the earliest stages of infection. Other tests may miss early signs of disease because there aren't enough viruses, bacteria, or other pathogens in the sample, or your body hasn't had enough time to develop an antibody response. Antibodies are proteins made by your immune system to attack foreign substances, such as viruses and bacteria. PCR tests can detect disease when there is only a very small amount of pathogens in your body.
During a PCR test, a small amount of genetic material in a sample is copied multiple times. The copying process is known as amplification. If there are pathogens in the sample, amplification will make them much easier to see.
PCR tests are used to:
Diagnose certain infectious diseases
Identify a genetic change that can cause disease
Find small amounts of cancer cells that might be missed in other types of tests
PCR tests work by:
Taking a sample of blood, saliva, mucus, or tissue
The sample will contain your own DNA and possibly the DNA of a pathogen or cancer cell.
The sample is put in a special machine. An enzyme called polymerase is added to the sample. This causes the sample to produce copies.
The copying process is repeated multiple times. After about an hour, billions of copies are made. If a virus or pathogen is present, it will be indicated on the machine.
Certain viruses, including COVID-19, are made up of RNA rather than DNA. For these viruses, the RNA must be changed into DNA before copying. This process is called reverse transcription PCR (rtPCR).
PCR and rtPCR check for the presence of a pathogen. Another type of PCR known as quantitative PCR (qPCR) measures the amount of pathogens in the sample. qPCR can be done at the same time as PCR or rtPCR.
There are different ways to get a sample for a PCR test. Common methods include blood tests and nasal swabs.
During a blood test, a health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
A nasal swab may be taken from the front part of your nostrils (anterior nares). It also may be taken from the back of your nostrils, in a procedure known as a nasal mid-turbinate (NMT) swab, or from the nasopharynx, the uppermost part of your nose and throat. In some cases, a health care provider will ask you to do an anterior nares test or an NMT swab yourself.
During an anterior nares test, you will start by tilting your head back. Then you or the provider will:
Gently insert a swab inside your nostril
Rotate the swab and leave it in place for 10 to 15 seconds
Remove the swab and insert it into your second nostril
Swab the second nostril using the same technique
Remove the swab
During an NMT swab, you will start by tilting your head back. Then you or your provider will:
Gently insert a swab onto the bottom of the nostril, pushing it until you feel it stopping
Rotate the swab for 15 seconds
Remove the swab and insert it into your second nostril
Swab the second nostril using the same technique
Remove the swab
During a nasopharyngeal swab:
You will tip your head back.
Your health care provider will insert a swab into your nostril until it reaches your nasopharynx (the upper part of your throat).
Your provider will rotate the swab and remove it.
You don't need any special preparations for a PCR test.
There is very little risk to having a blood test. You may have slight pain or bruising at the spot where the needle was put in, but most symptoms go away quickly.
A nasal swab may tickle your throat or cause you to cough. A nasopharyngeal swab may be uncomfortable and cause coughing or gagging. All these effects are temporary.
PCR tests are an accurate and reliable method for identifying many infectious diseases. And because they are often able to make diagnoses before symptoms of infection occur, PCR tests play a crucial role in preventing the spread of diseases.
PCR Tests: MedlinePlus Medical Test [accessed on Jan 05, 2022]
NCI Dictionary of Cancer Terms [accessed on Jan 05, 2022]
Laboratory Methods - Testing.com [accessed on Feb 18, 2022]
Blood Work | How This Provides Clues On Your Health | Leukemia & Lymphoma Society® (LLS) [accessed on Jan 05, 2022]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (31)
Polymerase Chain Reaction (PCR)
Polymerase chain reaction (PCR) is a technique used to "amplify" small segments of DNA.
Image by National Human Genome Research Institute (NHGRI)
Biotechnology
Polymerase chain reaction, or PCR, is used to amplify a specific sequence of DNA. Primers—short pieces of DNA complementary to each end of the target sequence—are combined with genomic DNA, Taq polymerase, and deoxynucleotides. Taq polymerase is a DNA polymerase isolated from the thermostable bacterium Thermus aquaticus that is able to withstand the high temperatures used in PCR. Thermus aquaticus grows in the Lower Geyser Basin of Yellowstone National Park. Reverse transcriptase PCR (RT-PCR) is similar to PCR, but cDNA is made from an RNA template before PCR begins.
Image by CNX Openstax
Antigenic Shift
Illustration of antigenic shift. NIAID illustration of potential influenza genetic reassortment
Image by National Institute of Allergy and Infectious Diseases (NIAID)
Laboratory Researcher
Chanelle Case Borden, Ph.D., a postdoctoral fellow in the National Cancer Institute's Experimental Immunology Branch, pipetting DNA samples into a tube for polymerase chain reaction, or PCR, a laboratory technique used to make multiple copies of a segment of DNA.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
Laboratory Researcher
Chanelle Case Borden, Ph.D., a postdoctoral fellow in the National Cancer Institute's Experimental Immunology Branch, pipetting DNA samples into a tube for polymerase chain reaction, or PCR, a laboratory technique used to make multiple copies of a segment of DNA.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
Laboratory Researcher
Chanelle Case Borden, Ph.D., a postdoctoral fellow in the National Cancer Institute's Experimental Immunology Branch, pipetting DNA samples into a tube for polymerase chain reaction, or PCR, a laboratory technique used to make multiple copies of a segment of DNA.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
Laboratory
Microcentrifuge tubes in a rack. Some of them are DNA samples while the remainder of them are primers to be used in polymerase chain reaction, or PCR, a laboratory technique used to make multiple copies of a segment of DNA.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
Laboratory Pipette
National Cancer Institute researcher pipetting DNA samples into a tube for polymerase chain reaction, or PCR, a laboratory technique used to make multiple copies of a segment of DNA.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
Laboratory Researcher
Chanelle Case Borden, Ph.D., a postdoctoral fellow in the National Cancer Institute's Experimental Immunology Branch, pipetting DNA samples into a tube for polymerase chain reaction, or PCR, a laboratory technique used to make multiple copies of a segment of DNA.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
Polymerase chain reaction (PCR)
Video by khanacademymedicine/YouTube
Polymerase Chain Reaction (PCR)
Video by DNA Learning Center/YouTube
PCR tubes
Photo of a strip of PCR tubes, each tube contains a 1000uL (1mL) reaction.
Image by Madprime
What is Polymerase Chain Reaction? | PCR Explained
Video by 2 Minute Classroom/YouTube
Laboratory Researcher
Chanelle Case Borden, Ph.D., a postdoctoral fellow in the National Cancer Institute's Experimental Immunology Branch, pipetting DNA samples into a tube for polymerase chain reaction, or PCR, a laboratory technique used to make multiple copies of a segment of DNA.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
DNA Genotyping and Sequencing
A technician loads samples into a digital PCR machine at the Cancer Genomics Research Laboratory, part of the National Cancer Institute's Division of Cancer Epidemiology and Genetics (DCEG). Polymerase chain reaction (PCR) is a technique that greatly amplifies small pieces of DNA, generating many thousands of copies of a particular DNA sequence.
See also https://dceg.cancer.gov/about/organization/programs-hgp/cgr.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
Laboratory Researcher
National Cancer Institute researcher setting up genetic samples and primers for polymerase chain reaction, or PCR, a laboratory technique used to make multiple copies of a segment of DNA.
Image by National Cancer Institute (NCI) / Daniel Sone (photographer)
Biotechnology
Southern blotting is used to find a particular sequence in a sample of DNA. DNA fragments are separated on a gel, transferred to a nylon membrane, and incubated with a DNA probe complementary to the sequence of interest. Northern blotting is similar to Southern blotting, but RNA is run on the gel instead of DNA. In western blotting, proteins are run on a gel and detected using antibodies.
Image by CNX Openstax
simple sequence repeat (SSR, a.k.a. microsatellite) locus
A number of DNA samples from specimens of Littorina plena amplified using polymerase chain reaction with primers targeting a variable simple sequence repeat (SSR, a.k.a. microsatellite) locus. Samples have been run on a 5% polyacrylamide gel and visualized using silver staining.
Image by ParinoidMarvin/Wikimedia
Biotechnology
This diagram shows the steps involved in molecular cloning.
Image by CNX Openstax
Gene therapy
Gene therapy using an adenovirus vector can be used to cure certain genetic diseases in which a person has a defective gene. (credit: NIH)
Image by U.S. National Library of Medicine
Testing for Ebola
Technicians set up polymerase chain reaction, or PCR, assay for Ebola in a containment laboratory. Assay components are assembled in the PCR hood to prevent contamination that could interfere with test results.
Image by U.S. Army photo by Dr. Randal J. Schoepp
reverse transcription polymerase chain reaction test
Microbiologist Erica Spackman reviews results of a reverse transcription polymerase chain reaction test to determine whether there is virus in a sample and to generate material for gene sequencing.
Image by USDA Agricultural Research Service/Photo by Suzanne Deblois.
How to Perform a Polymerase Chain Reaction | William Armour & Laura Towns
Oxford Academic (Oxford University Press)/YouTube
8:08
Gel Electrophoresis
Amoeba Sisters/YouTube
9:34
Polymerase chain reaction
Osmosis/YouTube
Polymerase Chain Reaction (PCR)
National Human Genome Research Institute (NHGRI)
Primer
National Human Genome Research Institute (NHGRI)
Complete Blood Count
Complete Blood Count
Also called: CBC, Full Blood Count, Blood Cell Count, Hemotology Panel
A complete blood count (CBC) is often part of a routine exam. It is used to measure different parts and features of your blood. A CBC can help detect a variety of disorders including infections, anemia, diseases of the immune system, and blood cancers.
Complete Blood Count
Also called: CBC, Full Blood Count, Blood Cell Count, Hemotology Panel
A complete blood count (CBC) is often part of a routine exam. It is used to measure different parts and features of your blood. A CBC can help detect a variety of disorders including infections, anemia, diseases of the immune system, and blood cancers.
A complete blood count, or CBC, is a blood test that measures many different parts and features of your blood, including:
Red blood cells, which carry oxygen from your lungs to the rest of your body.
White blood cells, which fight infections and other diseases. There are five major types of white blood cells. A CBC test measures the total number of white cells in your blood. A different test called a CBC with differential measures the number of each type of these white blood cells.
Platelets, which stop bleeding by helping your blood to clot.
Hemoglobin, a protein in red blood cells that carries oxygen from your lungs to the rest of your body.
Hematocrit, a measurement of how much of your blood is made up of red blood cells.
Mean corpuscular volume (MCV), a measure of the average size of your red blood cells.
Other names for a complete blood count: CBC, full blood count, blood cell count
A complete blood count is a common blood test that is often part of a routine checkup. Complete blood counts can help detect a variety of disorders including infections, anemia, diseases of the immune system, and blood cancers.
Your health care provider may have ordered a complete blood count as part of your checkup or to monitor your overall health. The test may also be used to:
Help diagnose blood diseases, infection, immune system disorders, or other medical conditions
Check for changes in an existing blood disorder
A health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
Usually there is no special preparation necessary for a complete blood count. But if your provider ordered other tests on your blood sample, you may need to fast (not eat or drink) for several hours before the test. Your provider will let you know if there are any special instructions to follow.
There is very little risk to having a blood test. You may experience slight pain or bruising at the spot where the needle went in, but most symptoms go away quickly.
A CBC counts the cells in your blood. There are many reasons your levels may not be in the normal range. For example:
Abnormal levels of red blood cells, hemoglobin, or hematocrit may be a sign of anemia, heart disease, or too little iron in your body.
Low white cell count may be a sign of an autoimmune disorder, bone marrow disorder, or cancer.
High white cell count may be a sign of an infection or a reaction to medicine.
If any of your levels are abnormal, it doesn't always mean you have a medical condition that needs treatment. Diet, activity level, medicines, a menstrual period, not drinking enough water, and other factors can affect the results. Talk with your provider to learn what your results mean.
A complete blood count is only one tool your health care provider uses to learn about your health. Your provider will consider your medical history, symptoms, and other factors to make a diagnosis. You may also need additional tests.
Complete Blood Count (CBC): MedlinePlus Medical Test [accessed on Jan 20, 2024]
Blood Tests - Blood Tests | NHLBI, NIH. Mar 24, 2022 [accessed on Jan 20, 2024]
Additional Materials (25)
Reticulocyte Count, Hemorrhage/Chronic Blood Loss
Reticulocytes are immature red blood cells (RBCs) released into the bloodstream from the bone marrow in which they developed. Normally, only a tiny percentage red blood cells circulating in the bloodstream are reticulocytes. The reticulocyte count rises, however, when bone marrow is called upon to produce more RBCs, in conditions such as heavy bleeding or certain types of anemia.
Image by TheVisualMD
Blood sample
During the blood collection process, medical personnel gather additional blood samples to test for an array of blood disorders and communicable diseases. Every unit of blood is rigorously tested before approved for transfusion into a patient.
Image by United States Marine Corps
Phlebotomy
Venipuncture (blood draw / collection) in the left arm of a male.
Image by MatthewLammers
Blood and Related Conditions
Blood and Related Conditions : Anemia results when there are too few red blood cells circulating in the bloodstream to deliver adequate oxygen to body tissues. There are different types and causes of anemia, including malnutrition, chronic bleeding, and diseases that result in red blood cells either being destroyed too quickly or produced too slowly.
Image by TheVisualMD
Components of Blood
Components of Blood : Our blood is composed of many different components, the largest categories being red and white blood cells (blood-clotting platelets are another key component) and the liquid portion known as blood plasma. A Complete Blood Count (CBC) includes several of the most basic, yet important, measurements of these components.
Image by TheVisualMD
Blood fractionation
Vial of separated blood. The middle layer is a type of sterile goo which separates the blood from the rest of what's drawn.
Image by Wheeler Cowperthwaite from Reno, USA
Whole Blood
A Red Cross whole blood donation before any separation
Image by Whoisjohngalt
White Blood Cells Rotation
This rotational interactive features five white blood cells. At the top left is a neutrophil (purple nucleus); center is a Monocyte-macrophage (orange nucleus); top right is a Lymphocyte (red nucleus); bottom left a Basophil (green nucleus); and bottom right an Eosinophil (yellow nucleus). These molecules are all part of a white blood cell count test. A white blood cell count is an important measure of this key component of the immune system; when the body is under attack, more WBCs are produced. White blood cells (also called leukocytes or WBCs) are in the front lines in the fight against harmful viruses, bacteria and even fungus. A white blood cell count is an important measure of this key component of the immune system; when the body is under attack, more WBCs are produced. Other factors, however, may also affect WBC counts, including allergies, chemotherapy, and other drugs, as well as leukemia.
Image by TheVisualMD
Medical Checkups
Image by TheVisualMD
Medical Checkups
Most doctors believe that people should have regular checkups as a part of preventive treatment. Regular health exams can help find problems before they begin, or in their early stages, when the chances of successful treatment are best.
Blood Pressure Reading: Photo Copyright 2005, James Gathany
Image by TheVisualMD
This browser does not support the video element.
Complete Blood Count, and Baselining Your Health
Video Topics : Our lifeblood consists of many components and a complete blood count (CBC) includes measurements of the fundamental elements. The largest categories are red and white blood cells (RBCs and WBCs) and cell fragments called platelets, which play roles in blood clotting. There are 20-30 trillion red blood cells in the body of an adult, each with a lifespan of about 100 days (RBCs contain an iron-containing protein called hemoglobin that enables them to carry oxygen to tissues throughout the body and then return carbon dioxide to the lungs). WBCs are in the front lines in the body's ongoing fight against harmful viruses, bacteria and even fungus; when a pathogen enters the body, WBCs mobilize in a coordinated defense response to eliminate, neutralize or mark the invader for destruction. The liquid portion of blood is called plasma and it carries nutrients, electrolytes, waste products, and hormones.
Video by TheVisualMD
Full Blood Count – what it tells your doctor about your health
Video by Pathology Tests Explained/YouTube
Complete Blood Count (CBC)
Video by Medicosis Perfectionalis/YouTube
Complete Blood Count
Video by Tom Wade MD/YouTube
high white blood cell count Video
Video by itbestshop/YouTube
Complete Blood Count pt1
Video by Med Immersion/YouTube
Complete Blood Count pt2
Video by Med Immersion/YouTube
This browser does not support the video element.
Normal Red Blood Cell (RBC) Count
An animation simulating a view of a healthy count of red blood cells as viewed in a slide projector or under a microscope. Initially, the screen in white with a circular black vignette along its borders. Then a still showing red blood cells slides up from the bottom left filling the screen and then comes into focus. The red blood cells resemble those taken from an scanning electron micrograph (SEM) and fill up the given space on the screen.
Video by TheVisualMD
This browser does not support the video element.
Anemic Blood Flow
Camera is stationary as it focuses on a capillary in a cell bed demonstrating anemic blood flow and it's lower red blood cell count.
Video by TheVisualMD
This browser does not support the video element.
Anemic Red Blood Cell (RBC) Count
An animation simulating a view of an unhealthy count of red blood cells as viewed in a slide projector or under a microscope. Initially, the screen in white with a circular black vignette along its borders. Then a still showing red blood cells on a light red background slides up from the bottom left filling the screen and then comes into focus. The red blood cells resemble those taken from an scanning electron micrograph (SEM). There are only a few red blood cells in this slide indicative of the low amount typical of some one who is anemic.
Video by TheVisualMD
This browser does not support the video element.
Anemic Red Blood Cell (RBC) Count
An animation simulating a close-up of an unhealthy count of red blood cells as viewed in a slide projector or under a microscope. Initially, the screen in white with a circular black vignette along its borders. Then a still showing red blood cells on a light red background slides up from the bottom left filling the screen and then comes into focus. Throughout the animation, the slide jitters a little. The red blood cells resemble those taken from an scanning electron micrograph (SEM). In this close up there are a few red blood cells along with a few white blood cells.
Video by TheVisualMD
Why Blood Tests Can Save Your Life
Video by Seeker+/YouTube
Introduction to lab values and normal ranges | Health & Medicine | Khan Academy
Video by khanacademymedicine/YouTube
Low blood counts and the risk of infection in cancer patients | Norton Cancer Institute
Video by Norton Healthcare/YouTube
Dr. Erba Describes Proper Diagnostic Testing of CML
Video by OncLiveTV/YouTube
Reticulocyte Count, Hemorrhage/Chronic Blood Loss
TheVisualMD
Blood sample
United States Marine Corps
Phlebotomy
MatthewLammers
Blood and Related Conditions
TheVisualMD
Components of Blood
TheVisualMD
Blood fractionation
Wheeler Cowperthwaite from Reno, USA
Whole Blood
Whoisjohngalt
White Blood Cells Rotation
TheVisualMD
Medical Checkups
TheVisualMD
Medical Checkups
TheVisualMD
2:12
Complete Blood Count, and Baselining Your Health
TheVisualMD
4:18
Full Blood Count – what it tells your doctor about your health
Pathology Tests Explained/YouTube
7:04
Complete Blood Count (CBC)
Medicosis Perfectionalis/YouTube
4:11
Complete Blood Count
Tom Wade MD/YouTube
8:22
high white blood cell count Video
itbestshop/YouTube
16:12
Complete Blood Count pt1
Med Immersion/YouTube
22:14
Complete Blood Count pt2
Med Immersion/YouTube
0:06
Normal Red Blood Cell (RBC) Count
TheVisualMD
0:07
Anemic Blood Flow
TheVisualMD
0:14
Anemic Red Blood Cell (RBC) Count
TheVisualMD
0:14
Anemic Red Blood Cell (RBC) Count
TheVisualMD
8:29
Why Blood Tests Can Save Your Life
Seeker+/YouTube
10:42
Introduction to lab values and normal ranges | Health & Medicine | Khan Academy
khanacademymedicine/YouTube
1:32
Low blood counts and the risk of infection in cancer patients | Norton Cancer Institute
Norton Healthcare/YouTube
2:39
Dr. Erba Describes Proper Diagnostic Testing of CML
OncLiveTV/YouTube
Red Blood Cells
Red Blood Cell (RBC) Count
Also called: Erythrocyte Count, RBC Count, Red Blood Count, Red Blood Cell Count, Red Count
A red blood cell (RBC) count is a blood test that measures the number of red blood cells in your blood. Red blood cells carry oxygen from your lungs to the rest of your body. An abnormal RBC count can be a sign of a serious health problem.
Red Blood Cell (RBC) Count
Also called: Erythrocyte Count, RBC Count, Red Blood Count, Red Blood Cell Count, Red Count
A red blood cell (RBC) count is a blood test that measures the number of red blood cells in your blood. Red blood cells carry oxygen from your lungs to the rest of your body. An abnormal RBC count can be a sign of a serious health problem.
{"label":"Red blood cell count reference range","scale":"lin","step":0.1,"hideunits":false,"items":[{"flag":"abnormal","label":{"short":"Low","long":"Low","orientation":"horizontal"},"values":{"min":0,"max":3.9},"text":"If your RBC count, hemoglobin, and hematocrit levels are low, you have anemia (a condition where the blood is unable to transport enough oxygen to the tissues and organs). ","conditions":["Anemia","Leukemia","Malnutrition","Multiple myeloma","Kidney failure","Pregnancy"]},{"flag":"normal","label":{"short":"Normal","long":"Normal","orientation":"horizontal"},"values":{"min":3.9,"max":5.5},"text":"Red blood cells (RBC) are made in the bone marrow and contain hemoglobin, a protein that carries oxygen to the tissues in the body. RBCs make up approximately 44% of the total blood volume.","conditions":[]},{"flag":"abnormal","label":{"short":"High","long":"High","orientation":"horizontal"},"values":{"min":5.5,"max":20},"text":"If your RBC count, hemoglobin, and hematocrit levels are high, you have polycythemia (a condition that causes a decreased blood flow). RBC count normally increases for several weeks when in a higher altitude.","conditions":["Dehydration","Heart disease","Polycythemia vera","Scarring of the lungs","Lung disease","Kidney cancer"]}],"units":[{"printSymbol":"(10<sup>6<\/sup>)\/\u03bcL","code":"10*6\/uL","name":"million per microliter"}],"value":4.7}[{"abnormal":0},{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
(10<sup>6</sup>)/μL
3.9
5.5
Your result is Normal.
Red blood cells (RBC) are made in the bone marrow and contain hemoglobin, a protein that carries oxygen to the tissues in the body. RBCs make up approximately 44% of the total blood volume.
Related conditions
A red blood cell (RBC) count measures the number of red blood cells, also known as erythrocytes, in your blood. Red blood cells carry oxygen from your lungs to every cell in your body. Your cells need oxygen to grow, reproduce, and stay healthy. An RBC count that is higher or lower than normal is often the first sign of an illness. So the test may allow you to get treatment even before you have symptoms.
Other names: erythrocyte count, red count
A red blood cell (RBC) count is almost always part of a complete blood count, a group of tests that measure many different parts and features of your blood. The RBC measurement is used to help diagnose red blood cell disorders, such as anemia, a condition in which your body does not make enough healthy red blood cells.
You may get this test as part of a complete blood count, which is often included in a routine checkup. You may also need this test if you have symptoms of a low or high red blood cell count.
Symptoms of a low red blood cell count include:
Weakness
Fatigue
Pale skin
Rapid heartbeat
Symptoms of a high red blood cell count include:
Headache
Dizziness
Vision problems
A health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
You don't need any special preparations for a red blood cell (RBC) count.
There is very little risk to having a blood test. There may be slight pain or bruising at the spot where the needle was put in, but most symptoms go away quickly.
Your results will show whether you have a normal red blood cell count or a count that is too low or too high.
A low red blood cell count can be a sign of:
Anemia
Leukemia, a type of blood cancer
Malnutrition, a condition in which your body does not get the calories, vitamins, and/or minerals needed for good health
Multiple myeloma, a cancer of the bone marrow
Kidney failure
It may also be a sign of pregnancy.
A high red blood cell count can be a sign of:
Dehydration
Heart disease
Polycythemia vera, a bone marrow disease that causes too many red blood cells to be made
Scarring of the lungs, often due to cigarette smoking
Lung disease
Kidney cancer
If you have questions about your results, talk to your health care provider.
If results showed you had a low or a high red blood cell count, you may need more tests to help make a diagnosis. These include:
Reticulocyte count, a test that counts the number of reticulocytes in the blood. Reticulocytes are red blood cells that are still developing. These are also known as immature red blood cells.
Iron tests, which measure iron levels in the blood. Iron is essential for making red blood cells.
Vitamin B test, which measures the amount of one or more B vitamins in the blood. B vitamins are important for making red blood cells.
Red Blood Cell (RBC) Count: MedlinePlus Medical Test [accessed on Jan 20, 2024]
RBC count: MedlinePlus Medical Encyclopedia [accessed on Jan 20, 2024]
Red Blood Cell Count (RBC) Test - Testing.com. Sep 27, 2022 [accessed on Jan 20, 2024]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (19)
Red blood cells
Red blood cells
Image by John Kalekos of Massachusetts image distribution for Science and Learning
Red Blood Cell
This image shows two red blood cells. The red blood cell is also called an erythrocyte: erythro is Greek for \"red,\" cyte is Latin for \"cell.\" The disc-shaped RBCs have the critical job of transporting oxygen from the lungs to the body's cells and bringing carbon dioxide from the cells back to the lungs to be expelled.
Image by TheVisualMD
Red Blood Cell in Capillary
The cardiovascular system is vast network of arteries, veins and vessels that would extend 60,000 miles if stretched end-to-end. All but a tiny fraction of this vessel network is invisible to the naked eye. The smallest capillaries (from latin "hairlike") are so narrow that red blood cells must pass through in single file. Higher than normal blood iron levels have been linked to heart disease and the reason is believed to be the oxidative stress the excess iron places on the walls of the blood vessels. It is the biological counterpart of rust. There are 20-30 trillion red blood cells (RBCs) in an adult's body. The life span of RBCs, which are produced in bone marrow, is about 100 days, which means that 2 million die (and are replaced) each second, but in that short lifetime they can make 75,000 round trips between lungs, heart and tissues in the body.
Image by TheVisualMD
Blood Smear Showing Reduced Red Blood Cell Count
Individual blood cells were first detected and described in the 17th century. Later, red blood cells (RBCs) were counted manually from a blood smear, a thin film of blood prepared on a glass slide and examined under a microscope (blood analysis is now automated, though smears are still used to detect visible abnormalities and to check or confirm the results of other tests). Anemia results when there are too few RBCs in circulation because they are being destroyed too quickly or produced too slowly. Anemia can be temporary or long term and range from mild to severe. Folate (also known as vitamin B9) is necessary for red blood cell production and the prevention of anemia, as well as the metabolism of carbohydrates. But folate also plays key roles in the synthesis and maintenance of DNA and is especially important in cell division and growth in fetal development (deficiencies of the vitamin in pregnancy is a common cause of birth defects). Pernicious anemia is a disorder in which the body's loses its ability to utilize folate and vitamin B12.
Image by TheVisualMD
Red Blood Cell (RBC)
There are 20-30 trillion red blood cells (RBCs) in an adult's body. The life span of RBCs, which are produced in bone marrow, is about 100 days, which means that 2 million die (and are replaced) each second. In their short lifetimes, however, red blood cells can make 75,000 round trips between lungs, heart and tissues in the body.
Image by TheVisualMD
Red Blood Cell
The RBC is disc-shaped and concave on both sides. The concave shape increases the cells' surface area, which allows them to distribute more oxygen to the body's cells. The shape also enables the cells to bunch together more compactly, helping them travel through the bloodstream more efficiently. Some RBCs are a bit thicker or thinner, wider or longer than others, but can change their shape to suit the demands of their environment. The cell membranes of the RBCs are protein meshes that give them flexibility, allowing them to navigate the twists and turns of the blood vessel network. The nearly 300 million hemoglobin molecules contained within each RBC easily move and slide past each other within the cell, adjusting their positions to conform to the RBC's shifting shape. Diameter : 7 μm
Image by TheVisualMD
Capillary Revealing Red Blood Cell
A portion of a capillary wall has been cut away to reveal the red blood cells flowing within.
Image by TheVisualMD
Red Blood Cell and White Blood Cell
Medical visualization of red blood cells and leukocytes.
Image by TheVisualMD
Blood Smear Showing Normal Red Blood Cell Count
Individual blood cells were first detected and described in the 17th century. Later, red blood cells were counted manually from a blood smear, a thin film of blood prepared on a glass slide and examined under a microscope. Blood analysis is now automated, though blood smears are still used to detect visible abnormalities and to check or confirm the results of other tests. There are normally between 4.2-5.8 million red blood cells per microliter (about a drop), which means there are 20-30 trillion red blood cells circulating through the body of an adult.
Image by TheVisualMD
Tubule of Nephron Revealing Many Red Blood Cell
This image shows the cut distal convoluted tubule of nephron with surrounding capillaries cut to reveal many red blood cells and healthy amounts of Erythopoeitin, EPO, (yellow particles). Erythropoeitin, EPO, is produced by the endothelial cells of the capillaries and the fibroblasts in the interstitial tissue surrounding the distal tubules. Normally, the kidneys produce EPO in response to low oxygen levels in order to stimulate red blood cell production in the bone marrow. A normal amount of red blood cells allows for the delivery of an adequate supply of oxygen.
Image by TheVisualMD
Red Blood Cell in Capillary
This image shows red blood cells traveling through capillaries, the smallest blood vessels in the body.
Image by TheVisualMD
Tubule of Nephron Revealing Few Red Blood Cell
Our kidneys are remarkable filters. Each day, they filter about 200 quarts of blood to extract about 2 quarts of wastes, which is then eliminated as urine. The kidneys' delicate filtration units are called nephrons; each kidney has about a million nephrons, and within each nephron are dense forests of tiny capillaries called glomeruli, which remove waste products from the blood while preventing the loss of other components, including proteins, electrolytes and blood cells. The glomerular filtration rate is the amount of blood that is filtered by the glomeruli per minute.
Image by TheVisualMD
This browser does not support the video element.
Complete Blood Count, and Baselining Your Health
Video Topics : Our lifeblood consists of many components and a complete blood count (CBC) includes measurements of the fundamental elements. The largest categories are red and white blood cells (RBCs and WBCs) and cell fragments called platelets, which play roles in blood clotting. There are 20-30 trillion red blood cells in the body of an adult, each with a lifespan of about 100 days (RBCs contain an iron-containing protein called hemoglobin that enables them to carry oxygen to tissues throughout the body and then return carbon dioxide to the lungs). WBCs are in the front lines in the body's ongoing fight against harmful viruses, bacteria and even fungus; when a pathogen enters the body, WBCs mobilize in a coordinated defense response to eliminate, neutralize or mark the invader for destruction. The liquid portion of blood is called plasma and it carries nutrients, electrolytes, waste products, and hormones.
Video by TheVisualMD
Red Blood Cell (RBC) Indices (Anemia Labs)
Video by Nursing School Explained/YouTube
WellnessFX: Red Blood Cell Indices Part 1 with Bryan Walsh
Video by WellnessFX/YouTube
WellnessFX: Red Blood Cell Indices Part 2 with Bryan Walsh
Video by WellnessFX/YouTube
Red Blood Cells Nursing Considerations, Normal Range, Nursing Care, Lab Values Nursing
Video by NURSINGcom/YouTube
This browser does not support the video element.
Flowing Red Blood Cell (RBC)
Animation of red blood cells flowoing quicly through a blood vessel. The camera is positioned in the lumen of the vessel and the rbc's are flowing towards the viewer. The rbc and and lumen are rendered with muted colors to give it a softer look.
Video by TheVisualMD
This browser does not support the video element.
Red Blood Cell Development
This video explains red blood cell development, following a pluripotent stem cell to red blood cell.
Video by TheVisualMD
Red blood cells
John Kalekos of Massachusetts image distribution for Science and Learning
Red Blood Cell
TheVisualMD
Red Blood Cell in Capillary
TheVisualMD
Blood Smear Showing Reduced Red Blood Cell Count
TheVisualMD
Red Blood Cell (RBC)
TheVisualMD
Red Blood Cell
TheVisualMD
Capillary Revealing Red Blood Cell
TheVisualMD
Red Blood Cell and White Blood Cell
TheVisualMD
Blood Smear Showing Normal Red Blood Cell Count
TheVisualMD
Tubule of Nephron Revealing Many Red Blood Cell
TheVisualMD
Red Blood Cell in Capillary
TheVisualMD
Tubule of Nephron Revealing Few Red Blood Cell
TheVisualMD
2:12
Complete Blood Count, and Baselining Your Health
TheVisualMD
7:45
Red Blood Cell (RBC) Indices (Anemia Labs)
Nursing School Explained/YouTube
33:35
WellnessFX: Red Blood Cell Indices Part 1 with Bryan Walsh
WellnessFX/YouTube
28:05
WellnessFX: Red Blood Cell Indices Part 2 with Bryan Walsh
WellnessFX/YouTube
3:01
Red Blood Cells Nursing Considerations, Normal Range, Nursing Care, Lab Values Nursing
NURSINGcom/YouTube
0:12
Flowing Red Blood Cell (RBC)
TheVisualMD
0:31
Red Blood Cell Development
TheVisualMD
White Blood Cells
White Blood Count (WBC)
Also called: WBC, WBC Blood Test, White Blood Count, White Blood Cell Count, Leukocyte Count, Leukopenia Test, Leukocytosis Test
A white blood count measures the number of white cells in your blood. White blood cells are part of the immune system. A count that is too high or too low can indicate an infection, immune system disorder, or another health problem.
White Blood Count (WBC)
Also called: WBC, WBC Blood Test, White Blood Count, White Blood Cell Count, Leukocyte Count, Leukopenia Test, Leukocytosis Test
A white blood count measures the number of white cells in your blood. White blood cells are part of the immune system. A count that is too high or too low can indicate an infection, immune system disorder, or another health problem.
{"label":"WBC count reference range","scale":"lin","step":1,"hideunits":false,"items":[{"flag":"abnormal","label":{"short":"Low","long":"Low","orientation":"horizontal"},"values":{"min":0,"max":4500},"text":"A low white blood cell count, called leukopenia, can result from a number of conditions and diseases, such as immune deficiencies, severe infections, and bone marrow disorders, among others. ","conditions":["Cancer","Severe infection","Bone marrow failure","Damage to the bone marrow","Drug toxicity","Aplastic anemia","Nutritional deficiencies","Autoimmune disorders"]},{"flag":"normal","label":{"short":"Normal","long":"Normal","orientation":"horizontal"},"values":{"min":4500,"max":11000},"text":"Normally, people produce about 100 billion white blood cells (WBCs) a day. The total white blood cell count normally ranges between 4,500 and 11,000 WBCs per microliter.","conditions":[]},{"flag":"abnormal","label":{"short":"High","long":"High","orientation":"horizontal"},"values":{"min":11000,"max":50000},"text":"A high white blood cell count, called leukocytosis, may result from a number of conditions and diseases, such as infections, inflammatory diseases, and physical stress, among others. ","conditions":["Infections","Inflammatory conditions","Allergic responses","Leukemia","Trauma","Burns","Physical stress"]}],"units":[{"printSymbol":"{WBC}\/uL","code":"{WBC}\/uL","name":"white blood cells per microliter"}],"value":7750}[{"abnormal":0},{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
{WBC}/uL
4500
11000
Your result is Normal.
Normally, people produce about 100 billion white blood cells (WBCs) a day. The total white blood cell count normally ranges between 4,500 and 11,000 WBCs per microliter.
Related conditions
A white blood count measures the number of white cells in your blood. White blood cells are part of the immune system. They help your body fight off infections and other diseases.
When you get sick, your body makes more white blood cells to fight the bacteria, viruses, or other foreign substances causing your illness. This increases your white blood count.
Other diseases can cause your body to make fewer white blood cells than you need. This lowers your white blood count. Diseases that can lower your white blood count include some types of cancer and HIV/AIDS, a viral disease that attacks white blood cells. Certain medicines, including chemotherapy, may also lower the number of your white blood cells.
There are five major types of white blood cells:
Neutrophils
Lymphocytes
Monocytes
Eosinophils
Basophils
A white blood count measures the total number of these cells in your blood. Another test, called a blood differential, measures the amount of each type of white blood cell.
Other names: WBC count, white cell count, white blood cell count
A white blood count is most often used to help diagnose disorders related to having a high white blood cell count or low white blood cell count.
Disorders related to having a high white blood count include:
Autoimmune and inflammatory diseases, conditions that cause the immune system to attack healthy tissues
Bacterial or viral infections
Cancers such as leukemia and Hodgkin disease
Allergic reactions
Disorders related to having a low white blood count include:
Diseases of the immune system, such as HIV/AIDS
Lymphoma, a cancer of the bone marrow
Diseases of the liver or spleen
A white blood count can show if the number of your white blood cells is too high or too low, but it can't confirm a diagnosis. So it is usually done along with other tests, such as a complete blood count, blood differential, blood smear, and/or bone marrow test.
You may need this test if you have signs of an infection, inflammation, or autoimmune disease. Symptoms of infection include:
Fever
Chills
Body aches
Headache
Symptoms of inflammation and autoimmune diseases will be different, depending on the area of inflammation and type of disease.
You may also need this test if you have a disease that weakens your immune system or are taking medicine that lowers your immune response. If the test shows your white blood count is getting too low, your provider may be able to adjust your treatment.
Your newborn or older child may also be tested as part of a routine screening, or if they have symptoms of a white blood cell disorder.
A health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out.
To test children, a health care provider will take a sample from the heel (newborns and young babies) or the fingertip (older babies and children). The provider will clean the heel or fingertip with alcohol and poke the site with a small needle. The provider will collect a few drops of blood and put a bandage on the site.
You don't need any special preparations for a white blood count.
After a blood test, you may have slight pain or bruising at the spot where the needle was put in, but most symptoms go away quickly.
There is very little risk to your baby or child with a needle stick test. Your child may feel a little pinch when the site is poked, and a small bruise may form at the site. This should go away quickly.
A high white blood count may mean you have one of the following conditions:
A bacterial or viral infection
An inflammatory disease such as rheumatoid arthritis
An allergy
Leukemia or Hodgkin disease
Tissue damage from a burn injury or surgery
A low white blood count may mean you have one of the following conditions:
Bone marrow damage. This may be caused by infection, disease, or treatments such as chemotherapy.
Cancers that affect the bone marrow
An autoimmune disorder, such as lupus (or SLE)
HIV/AIDS
If you are already being treated for a white blood cell disorder, your results may show if your treatment is working or whether your condition has improved.
If you have questions about your results, talk to your health care provider.
White blood count results are often compared with results of other blood tests, including a blood differential. A blood differential test shows the amount of each type of white blood cell, such as neutrophils or lymphocytes. Neutrophils mostly target bacterial infections. Lymphocytes mostly target viral infections.
A higher than normal amount of neutrophils is known as neutrophilia.
A lower than normal amount is known as neutropenia.
A higher than normal amount of lymphocytes is known as lymphocytosis.
A lower normal amount is known as lymphopenia.
White Blood Count (WBC): MedlinePlus Medical Test [accessed on Jan 20, 2024]
WBC count: MedlinePlus Medical Encyclopedia [accessed on Jan 20, 2024]
White Blood Cell Count (WBC Blood Test) - Testing.com. Sep 28, 2022 [accessed on Jan 20, 2024]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (37)
White Blood Cell Count: Bone Marrow
Disease or damage to the bone marrow, caused by infection, cancer, radiation treatment, or chemotherapy can lower white blood cell count by impairing the marrow's ability to produce new white blood cells.
Image by TheVisualMD
White Blood Cells, Bone Marrow
Bone marrow is constantly producing blood cells, including white blood cells and red blood cells as well platelets, which are cell fragments important for blood clotting. Disease and disorders of the bone marrow can, in turn, affect the production of blood cells. Both cancer and cancer treatment (chemotherapy and radiation) can also have an impact on the bone marrow's ability to produce blood cells.
Image by TheVisualMD
This browser does not support the video element.
Complete Blood Count, and Baselining Your Health
Video Topics : Our lifeblood consists of many components and a complete blood count (CBC) includes measurements of the fundamental elements. The largest categories are red and white blood cells (RBCs and WBCs) and cell fragments called platelets, which play roles in blood clotting. There are 20-30 trillion red blood cells in the body of an adult, each with a lifespan of about 100 days (RBCs contain an iron-containing protein called hemoglobin that enables them to carry oxygen to tissues throughout the body and then return carbon dioxide to the lungs). WBCs are in the front lines in the body's ongoing fight against harmful viruses, bacteria and even fungus; when a pathogen enters the body, WBCs mobilize in a coordinated defense response to eliminate, neutralize or mark the invader for destruction. The liquid portion of blood is called plasma and it carries nutrients, electrolytes, waste products, and hormones.
Video by TheVisualMD
The Immune System Explained I – Bacteria Infection
Video by Kurzgesagt – In a Nutshell/YouTube
Immune Response to Bacteria
Video by NIAID/YouTube
Immunology - Adaptive Immune System
Video by Armando Hasudungan/YouTube
Immune System - Natural Killer Cell
Video by Kyle Thornthwaite/YouTube
Your Immune System: Natural Born Killer - Crash Course Biology #32
Video by CrashCourse/YouTube
White Blood Cell and Red Blood Cell
Medical visualization of blood cells. Depicted are numerous red blood cells and a single white blood cell.
Image by TheVisualMD
White Blood Cell and Red Blood Cell
Medical visualization of blood cells. Depicted are numerous red blood cells and a single white blood cell.
Image by TheVisualMD
Red Blood Cell and White Blood Cell
Visualization of red blood cells and a white blood cell
Image by TheVisualMD
Sensitive content
This media may include sensitive content
Blood cells (from left to right: erythrocyte, thrombocyte, leukocyte)
A single drop of blood contains millions of red blood cells, white blood cells, and platelets. One of each type is shown here, isolated from a scanning electron micrograph.
Image by Electron Microscopy Facility at The National Cancer Institute at Frederick (NCI-Frederick)
Bone structure
Anatomy of the bone. The bone is made up of compact bone, spongy bone, and bone marrow. Compact bone makes up the outer layer of the bone. Spongy bone is found mostly at the ends of bones and contains red marrow. Bone marrow is found in the center of most bones and has many blood vessels. There are two types of bone marrow: red and yellow. Red marrow contains blood stem cells that can become red blood cells, white blood cells, or platelets. Yellow marrow is made mostly of fat.
Image by Smart Servier website
Blood Cells
Formed Elements of Blood
Image by Blausen.com staff (2014). \"Medical gallery of Blausen Medical 2014\"
Phagocytosis - C-reactive protein (CRP) is a substance made by the liver that is released into the bloodstream by inflammation and infection as part of the body's immune response.
C-reactive protein (CRP) is a substance made by the liver that is released into the bloodstream by inflammation and infection as part of the body's immune response. White blood cells are also mobilized by the immune system and CRP is believed to enhance the activity of the white blood cells called macrophages. Each type of white blood cell has its own specialized immune functions; macrophages, for example, basically engulf and \"eat\" foreign invaders such as bacteria, viruses and fungi. Macrophages in the spleen and the liver weed out old and defective red blood cells and break them into recyclables (iron, heme, and some globin) and wastes (such as bilirubin). The bilirubin is then used by the liver to produce bile, which is stored in the gallbladder and released into the small intestine to aid digestion.
Image by TheVisualMD
White blood cells
Immune cells surrounding hair follicles in mouse skin. These hair follicles are home to a diverse array of commensal bacteria.
Image by NIAID
Neutrophil
Neutrophil function, relationship to disease, and location in the human body. Credit: NIAID
Image by NIAID
Innate immune system
Image by US Gov
Macrophage Capturing Foreign Antigen
Cell-mediated immunity is an immune response that does not involve antibodies or complement but rather involves the activation of macrophages, natural killer cells (NK), antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in response to an antigen. Macrophages are white blood cells that engulf and digest cellular debris and pathogens
Image by TheVisualMD
Mast Cell
Mast cells produce histamine. Histamine is known for its role in inflammation. It affects a variety of behavior patterns including the sleep-wake cycle and food intake. Antihistamines may work at odds with inflammation and depression.
Image by TheVisualMD
Leukocytes
Image by OpenStax College
Innate immune system
Illustration of the Innate Immune System responding to injury.
Image by OpenStax College
Eosinophilia
Drawing of an eosinophil white blood cell
Image by Iceclanl
Two neutrophils among many red blood cells. Neutrophils are one type of cell affected by chronic granulomatous disease.
Image by Uploaded by Mgiganteus
Eosinophils
Eosinophil function, relationship to disease, and location in the human body.
Image by NIAID
Sensitive content
This media may include sensitive content
Blood Cells
This is a scanning electron microscope image from normal circulating human blood. One can see red blood cells, several white blood cells including lymphocytes, amonocyte, a neutrophil, and many small disc-shaped platelets. Red cells are nonnucleated and contain hemoglobin, an important protein that contains iron and allows the cell to carry oxygen to other parts of the body. They also carry carbon dioxide away from peripheral tissue to the lungs where it can be exhaled. The infection-fighting white blood cells are classified in two main groups: granular and agranular. All blood cells are formed in the bone marrow. There are two types of agranulocytes: lymphocytes, which fight disease by producing antibodies and thus destroying foreign material, and monocytes. Platelets are tiny cells formed in bone marrow and are necessary for blood clotting.
Image by Bruce Wetzel (photographer). Harry Schaefer (photographer), National Cancer Institute
Immune System and Autoimmune Diseases
Normally, an individual's immune system learns to identify and ignore all of the distinctive little structures found on that individual's own cells. Sometimes, however, it will make a mistake and identify its own body as foreign. If that happens, the immune system produces antibodies that attempt to destroy the body's own cells in the same way it would try to destroy a foreign invader.
Image by TheVisualMD
Eosinophils
Drawing of an eosinophil white blood cell
Image by BruceBlaus
Eosinophils
On the left there is a segmented polymorphonuclear neutrophil, on the right and below is one eosinophil leucocyte. For comparison the red blood cell have a diameter of 7-8 micrometers. The picture was taken with a Nikon Eclipse 600 microscope, magnification was 1000x.
Image by Davidcsaba Dr. David Csaba L.
Neutrophil action - Inflammation
Neutrophil granulocyte migrates from the blood vessel to the matrix, secreting proteolytic enzymes, in order to dissolve intercellular connections (for improvement of its mobility) and envelop bacteria through Phagocytosis.
Image by Uwe Thormann/Wikimedia
Neutrophil
Image by BruceBlaus
White Blood Cells
A type of immune cell. Most white blood cells are made in the bone marrow and are found in the blood and lymph tissue. White blood cells help the body fight infections and other diseases. Granulocytes, monocytes, and lymphocytes are white blood cells.
Image by Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014"
high white blood cell count Video
Video by itbestshop/YouTube
What Are White Blood Cells | Health | Biology | FuseSchool
Video by FuseSchool - Global Education/YouTube
Learning to Decode Your Blood Test Results for Chronic Lymphocytic Leukemia (CLL)
Video by CLL Society/YouTube
WellnessFX: White Blood Cells And Differential with Bryan Walsh
Video by WellnessFX/YouTube
White Blood Count
White Blood Count
Image by TheVisualMD
White Blood Cell Count: Bone Marrow
TheVisualMD
White Blood Cells, Bone Marrow
TheVisualMD
2:12
Complete Blood Count, and Baselining Your Health
TheVisualMD
6:49
The Immune System Explained I – Bacteria Infection
Kurzgesagt – In a Nutshell/YouTube
1:47
Immune Response to Bacteria
NIAID/YouTube
14:59
Immunology - Adaptive Immune System
Armando Hasudungan/YouTube
3:02
Immune System - Natural Killer Cell
Kyle Thornthwaite/YouTube
15:02
Your Immune System: Natural Born Killer - Crash Course Biology #32
CrashCourse/YouTube
White Blood Cell and Red Blood Cell
TheVisualMD
White Blood Cell and Red Blood Cell
TheVisualMD
Red Blood Cell and White Blood Cell
TheVisualMD
Sensitive content
This media may include sensitive content
Blood cells (from left to right: erythrocyte, thrombocyte, leukocyte)
Electron Microscopy Facility at The National Cancer Institute at Frederick (NCI-Frederick)
Bone structure
Smart Servier website
Blood Cells
Blausen.com staff (2014). \"Medical gallery of Blausen Medical 2014\"
Phagocytosis - C-reactive protein (CRP) is a substance made by the liver that is released into the bloodstream by inflammation and infection as part of the body's immune response.
TheVisualMD
White blood cells
NIAID
Neutrophil
NIAID
Innate immune system
US Gov
Macrophage Capturing Foreign Antigen
TheVisualMD
Mast Cell
TheVisualMD
Leukocytes
OpenStax College
Innate immune system
OpenStax College
Eosinophilia
Iceclanl
Two neutrophils among many red blood cells. Neutrophils are one type of cell affected by chronic granulomatous disease.
Uploaded by Mgiganteus
Eosinophils
NIAID
Sensitive content
This media may include sensitive content
Blood Cells
Bruce Wetzel (photographer). Harry Schaefer (photographer), National Cancer Institute
Immune System and Autoimmune Diseases
TheVisualMD
Eosinophils
BruceBlaus
Eosinophils
Davidcsaba Dr. David Csaba L.
Neutrophil action - Inflammation
Uwe Thormann/Wikimedia
Neutrophil
BruceBlaus
White Blood Cells
Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014"
8:22
high white blood cell count Video
itbestshop/YouTube
3:12
What Are White Blood Cells | Health | Biology | FuseSchool
FuseSchool - Global Education/YouTube
1:17:17
Learning to Decode Your Blood Test Results for Chronic Lymphocytic Leukemia (CLL)
CLL Society/YouTube
16:52
WellnessFX: White Blood Cells And Differential with Bryan Walsh
A platelet count test measures the number of platelets in your blood. Platelets, also known as thrombocytes, are small blood cells that are essential for blood clotting. Platelets may be counted to monitor or diagnose diseases, or to look for the cause of too much bleeding or clotting.
A platelet count test measures the number of platelets in your blood. Platelets, also known as thrombocytes, are small blood cells that are essential for blood clotting. Platelets may be counted to monitor or diagnose diseases, or to look for the cause of too much bleeding or clotting.
{"label":"Platelet count reference range","scale":"lin","step":1,"hideunits":false,"items":[{"flag":"abnormal","label":{"short":"VL","long":"Very low","orientation":"horizontal"},"values":{"min":1,"max":50},"text":"A lower-than-normal platelet count is called thrombocytopenia. This condition can cause you to bleed too much after a cut or other injury that causes bleeding. If your platelet count is very low, your risk for bleeding is higher. Even every day activities can cause bleeding. Thrombocytopenia can be life-threatening, especially if you have serious bleeding or bleeding in your brain. ","conditions":["Autoimmune disorders","Leukemia","Von Willebrand disease","Glanzmann's thrombasthenia","Bernard-Soulier syndrome","Storage pool disease","Acquired platelet dysfunction","Heavy alcohol intake","Severe bleeding"]},{"flag":"abnormal","label":{"short":"L","long":"Low","orientation":"horizontal"},"values":{"min":50,"max":150},"text":"A lower-than-normal platelet count is called thrombocytopenia. This condition can cause you to bleed too much after a cut or other injury that causes bleeding. Bleeding can happen inside your body, underneath your skin, or from the surface of your skin.","conditions":["Thrombocytopenia","Autoimmune disorders","Leukemia","Von Willebrand disease","Glanzmann's thrombasthenia","Bernard-Soulier syndrome","Storage pool disease","Acquired platelet dysfunction","Heavy alcohol intake"]},{"flag":"normal","label":{"short":"N","long":"Normal","orientation":"horizontal"},"values":{"min":150,"max":450},"text":"A normal platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. Platelets are tiny blood cells that are made in the bone marrow from larger cells. When you are injured, platelets stick together to form a plug to seal your wound. This plug is called a blood clot.","conditions":[]},{"flag":"abnormal","label":{"short":"H","long":"High","orientation":"horizontal"},"values":{"min":450,"max":1000},"text":"A higher-than-normal platelet count is called thrombocytosis. This can make your blood clot more than you need it to. Blood clots can be dangerous because they can block blood flow.","conditions":["Thrombocytosis","Essential thrombocythemia","Bone marrow disease","Infections","Spleen removal"]}],"units":[{"printSymbol":"10\u00b3\/\u03bcL","code":"10*3\/uL","name":"thousand per microliter"}],"value":300}[{"abnormal":1},{"abnormal":0},{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
10³/μL
50
150
450
Your result is Normal.
A normal platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. Platelets are tiny blood cells that are made in the bone marrow from larger cells. When you are injured, platelets stick together to form a plug to seal your wound. This plug is called a blood clot.
Related conditions
Platelets, also known as thrombocytes, are small blood cells that are essential for blood clotting. Clotting is the process that helps you stop bleeding after an injury. There are two types of platelet tests: a platelet count test and platelet function tests.
A platelet count test measures the number of platelets in your blood. A lower than normal platelet count is called thrombocytopenia. This condition can cause you to bleed too much after a cut or other injury that causes bleeding. A higher than normal platelet count is called thrombocytosis. This can make your blood clot more than you need it to. Blood clots can be dangerous because they can block blood flow.
Other names: platelet count, thrombocyte count
A platelet count is most often used to monitor or diagnose conditions that cause too much bleeding or too much clotting. A platelet count may be included in a complete blood count, a test that is often done as part of a regular checkup.
You may need platelet count testing if you have symptoms of having too few or too many platelets.
Symptoms of too few platelets include:
Prolonged bleeding after a minor cut or injury
Nosebleeds
Unexplained bruising
Pinpoint sized red spots on the skin, known as petechiae
Purplish spots on the skin, known as purpura. These may be caused by bleeding under the skin.
Heavy and/or prolonged menstrual periods
Symptoms of too many platelets include:
Numbness of hands and feet
Headache
Dizziness
Weakness
Most platelet tests are done on a blood sample.
During the test, a health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
You don't need any special preparations for a platelet count test.
There is very little risk to having a blood test. You may have slight pain or bruising at the spot where the needle was put in, but most symptoms go away quickly.
If your results show a lower than normal platelet count (thrombocytopenia), it may indicate:
A cancer that affects the blood, such as leukemia or lymphoma
A viral infection, such as mononucleosis, hepatitis, or measles
An autoimmune disease. This is a disorder that causes the body to attack its own healthy tissues, which can include platelets.
Infection or damage to the bone marrow
Cirrhosis
Vitamin B12 deficiency
Gestational thrombocytopenia, a common, but mild, low-platelet condition affecting pregnant women. It is not known to cause any harm to a mother or her unborn baby. It usually gets better on its own during pregnancy or after birth.
If your results show a higher than normal platelet count (thrombocytosis), it may indicate:
Certain types of cancer, such as lung cancer or breast cancer
Anemia
Inflammatory bowel disease
Rheumatoid arthritis
A viral or bacterial infection
Platelet Tests: MedlinePlus Medical Test [accessed on Jan 20, 2024]
Platelet Count (PLT) Blood Test - Testing.com. Dec 19, 2023 [accessed on Jan 20, 2024]
Platelet count: MedlinePlus Medical Encyclopedia [accessed on Jan 20, 2024]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (8)
Platelet Development
Illustration of Platelet Development
Image by OpenStax College
Sensitive content
This media may include sensitive content
Platelet Disorders
From left to right: erythrocyte, thrombocyte, leukocyte
Image by Electron Microscopy Facility at The National Cancer Institute at Frederick (NCI-Frederick)
Scheme of a blood sample after centrifugation
scheme of a blood sample after centrifugation
Image by KnuteKnudsen (talk)
Decode Your Blood Test: Platelets 💉 | Merck Manual Consumer Version
Video by Merck Manuals/YouTube
This browser does not support the video element.
Complete Blood Count, and Baselining Your Health
Video Topics : Our lifeblood consists of many components and a complete blood count (CBC) includes measurements of the fundamental elements. The largest categories are red and white blood cells (RBCs and WBCs) and cell fragments called platelets, which play roles in blood clotting. There are 20-30 trillion red blood cells in the body of an adult, each with a lifespan of about 100 days (RBCs contain an iron-containing protein called hemoglobin that enables them to carry oxygen to tissues throughout the body and then return carbon dioxide to the lungs). WBCs are in the front lines in the body's ongoing fight against harmful viruses, bacteria and even fungus; when a pathogen enters the body, WBCs mobilize in a coordinated defense response to eliminate, neutralize or mark the invader for destruction. The liquid portion of blood is called plasma and it carries nutrients, electrolytes, waste products, and hormones.
Video by TheVisualMD
Platelets Nursing Considerations, Normal Range, Nursing Care, Lab Values Nursing
Video by NURSINGcom/YouTube
Platelets Explained in Two Minutes
Video by American Red Cross/YouTube
The life and times of RBCs and platelets
Video by khanacademymedicine/YouTube
Platelet Development
OpenStax College
Sensitive content
This media may include sensitive content
Platelet Disorders
Electron Microscopy Facility at The National Cancer Institute at Frederick (NCI-Frederick)
Scheme of a blood sample after centrifugation
KnuteKnudsen (talk)
0:48
Decode Your Blood Test: Platelets 💉 | Merck Manual Consumer Version
Merck Manuals/YouTube
2:12
Complete Blood Count, and Baselining Your Health
TheVisualMD
3:54
Platelets Nursing Considerations, Normal Range, Nursing Care, Lab Values Nursing
NURSINGcom/YouTube
1:47
Platelets Explained in Two Minutes
American Red Cross/YouTube
10:35
The life and times of RBCs and platelets
khanacademymedicine/YouTube
Hemoglobin
Hemoglobin Blood Test
Also called: Hemoglobin, Hgb
A hemoglobin test measures the levels of hemoglobin in your blood. Hemoglobin is an iron-rich protein in red blood cells that carries oxygen. Abnormal levels may mean you have anemia or another blood disorder.
Hemoglobin Blood Test
Also called: Hemoglobin, Hgb
A hemoglobin test measures the levels of hemoglobin in your blood. Hemoglobin is an iron-rich protein in red blood cells that carries oxygen. Abnormal levels may mean you have anemia or another blood disorder.
{"label":"Hemoglobin reference range","scale":"lin","step":0.1,"hideunits":false,"items":[{"flag":"abnormal","label":{"short":"Low","long":"Low","orientation":"horizontal"},"values":{"min":0,"max":13.8},"text":"Low levels of hemoglobin indicate that there is a shortage of red blood cells; this can be the result of RBCs being lost or destroyed too quickly or produced too slowly.","conditions":["Iron deficiency","Vitamin B12 deficiency","Folate deficiency","Sickle cell disease","Thalassemia","Cirrhosis","Bone marrow damage","Chronic disease","Acute or chronic bleeding"]},{"flag":"normal","label":{"short":"Normal","long":"Normal","orientation":"horizontal"},"values":{"min":13.8,"max":17.2},"text":"Heme, an iron-containing molecule, combines with globin proteins to form hemoglobin, which carries oxygen in red blood cells from the lungs to the rest of the body. ","conditions":[]},{"flag":"abnormal","label":{"short":"High","long":"High","orientation":"horizontal"},"values":{"min":17.2,"max":30},"text":"High levels of hemoglobin can be the result of dehydration, lung disease and other conditions.","conditions":["Polycythemia","Dehydration","Bone marrow diseases","Severe lung disease","Heart disease","Smoking","Living at high altitudes"]}],"units":[{"printSymbol":"g\/dL","code":"g\/dL","name":"gram per deciliter"}],"value":15.5}[{"abnormal":0},{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
g/dL
13.8
17.2
Your result is Normal.
Heme, an iron-containing molecule, combines with globin proteins to form hemoglobin, which carries oxygen in red blood cells from the lungs to the rest of the body.
Related conditions
A hemoglobin test measures the levels of hemoglobin in your blood. Hemoglobin is a protein in your red blood cells that carries oxygen from your lungs to the rest of your body. If your hemoglobin levels are abnormal, it may be a sign that you have a blood disorder.
Other names: Hb, Hgb
A hemoglobin test is often used to check for anemia, a condition in which your body has fewer red blood cells than normal. If you have anemia, the cells in your body don't get all the oxygen they need. Hemoglobin tests are measured as part of a complete blood count (CBC).
Your health care provider may order the test as part of a routine exam, or if you have:
Symptoms of anemia, which include weakness, dizziness, and cold hands and feet
A family history of thalassemia, sickle cell anemia, or other inherited blood disorder
A diet low in iron and other minerals
A long-term infection
Excessive blood loss from an injury or surgical procedure
A health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
You don't need any special preparation for a hemoglobin test. If your health care provider has ordered other tests on your blood sample, you may need to fast (not eat or drink) for several hours before the test. Your health care provider will let you know if there are any special instructions to follow.
There is very little risk to having a blood test. After the test, some people experience mild pain, dizziness, or bruising. These symptoms usually go away quickly.
There are many reasons your hemoglobin levels may not be in the normal range.
Low hemoglobin levels may be a sign of:
Different types of anemia
Thalassemia
Iron deficiency
Liver disease
Cancer and other diseases
High hemoglobin levels may be a sign of:
Lung disease
Heart disease
Polycythemia vera, a disorder in which your body makes too many red blood cells. It can cause headaches, fatigue, and shortness of breath.
If any of your levels are abnormal, it doesn't always mean you have a medical condition that needs treatment. Diet, activity level, medicines, a menstrual period, and other factors can affect the results. You may also have higher than normal hemoglobin levels if you live in a high altitude area. Talk with your provider to learn what your results mean.
Some forms of anemia are mild, while other types of anemia can be serious and even life threatening if not treated. If you are diagnosed with anemia, be sure to talk to your health care provider to find out the best treatment plan for you.
Hemoglobin Test: MedlinePlus Medical Test [accessed on Jan 20, 2024]
Hemoglobin: MedlinePlus Medical Encyclopedia [accessed on Jan 20, 2024]
Hemoglobin - Health Encyclopedia - University of Rochester Medical Center [accessed on Jan 20, 2024]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (16)
Hemoglobin | Human anatomy and physiology | Health & Medicine | Khan Academy
Video by Khan Academy/YouTube
Blood, Part 2 - There Will Be Blood: Crash Course A&P #30
Video by CrashCourse/YouTube
Haemoglobin
Video by Wellcome Trust/YouTube
Hemoglobin A1c & Diabetes
Video by DiabeTV/YouTube
Hemoglobin Molecule
Molecule of hemoglobin.
Image by TheVisualMD
Hemoglobin A1C Molecule
Hemoglobin is a protein found inside red blood cells that carries oxygen from the lungs to cells throughout the body. Hemoglobin also binds with glucose. Diabetics have too much glucose in the bloodstream and this extra glucose binds (or glycates) with hemoglobin. Glycated hemoglobin usually stays glycated for the life of the red blood cell (about 3 months). Therefore, the percentage of hemoglobin that is glycated (measured as A1C) reflects glucose levels that have affected red blood cells up to 3 months in the past. The hemoglobin A1C test measures the percentage of hemoglobin bound to blood sugar (glucose); the test is used to diagnose type 1 and type 2 diabetes. Because the test results reflect average blood sugar levels over a period of 2-3 months (rather than daily fluctuations), the hemoglobin A1C test is also used to gauge how well patients are managing their diabetes over time.
Image by TheVisualMD
Hemoglobin A1C: Red Blood Cells
Red blood cells use the iron-rich protein hemoglobin to carry oxygen from the lungs to cells throughout the body and return carbon dioxide to the lungs. The percentage of hemoglobin bound to blood glucose (hemoglobin A1C) is used to diagnose diabetes.
Image by TheVisualMD
Hemoglobin of Red Blood Cell
Hemoglobin is an iron-containing protein found in red blood cells that binds oxygen and carbon dioxide for transport and delivery to different parts of the body.
Image by TheVisualMD
Hemoglobin Molecule
Hemoglobin is an iron-rich protein that is packed inside RBCs. It is a structurally complex molecule that can change shape to either hold or release oxygen, depending on the body's need. There are close to 300 million hemoglobin molecules within each RBC.
Image by TheVisualMD
Hemoglobin Molecule Heme Group
A heme group in a hemoglobin molecule consists of an iron atom bound equally to four nitrogen atoms, all lying in one plane. The iron atom is the site of oxygen binding.
Image by TheVisualMD
This browser does not support the video element.
Hemoglobin Within Red Blood Cell (RBC)
A red blood cell rushes toward the camera, the camera enters the cell to focus on all of the hemoglobin molecules within
Video by TheVisualMD
Hemoglobin, Carbon Monoxide
Hemoglobin is an iron-containing protein that enables red blood cells to deliver oxygen from the lungs to cells throughout the body. But the same binding site on the hemoglobin molecule has an even stronger affinity for carbon monoxide, which is why we are so susceptible to poisoning by this deadly gas; carbon monoxide grabs all the binding sites and starves the body's tissues of oxygen
Image by TheVisualMD
This browser does not support the video element.
Hemoglobin A1c
The hemoglobin A1c test measures the percentage of hemoglobin bound to blood sugar (glucose); the test is used to diagnose type 1 and type 2 diabetes. Because the test results reflect average blood sugar levels over a period of 2-3 months (rather than daily fluctuations), the hemoglobin A1C test is also used to gauge how well patients are managing their diabetes over time.
Video by TheVisualMD
Hemoglobin A1c
The hemoglobin A1c test measures the percentage of hemoglobin bound to blood sugar (glucose); the test is used to diagnose type 1 and type 2 diabetes. Because the test results reflect average blood sugar levels over a period of 2-3 months (rather than daily fluctuations), the hemoglobin A1C test is also used to gauge how well patients are managing their diabetes over time.
Image by TheVisualMD
Hemoglobin: O2 Binding Hemoglobin
Hemoglobin normally binds to life-sustaining oxygen. But the same binding site on the hemoglobin molecule has an even stronger affinity for carbon monoxide, which is why we are so susceptible to poisoning by this deadly gas.
Image by TheVisualMD
HemoglobinA1C
Hemoglobin Test for O2 Binding Hemoglobin : A hemoglobin test is a measurement of your blood's oxygen-carrying capacity. High levels of hemoglobin can be the result of dehydration, lung disease and other conditions. Low levels of hemoglobin indicate that there is a shortage of red blood cells; this can be the result of RBCs being lost or destroyed too quickly or produced too slowly. Hemoglobin is an iron-containing protein that enables red blood cells to deliver oxygen from the lungs to cells throughout the body. But the same binding site on the hemoglobin molecule has an even stronger affinity for carbon monoxide, which is why we are so susceptible to poisoning by this deadly gas; carbon monoxide grabs all the binding sites and starves the body's tissues of oxygen.
Image by TheVisualMD
14:34
Hemoglobin | Human anatomy and physiology | Health & Medicine | Khan Academy
Khan Academy/YouTube
10:01
Blood, Part 2 - There Will Be Blood: Crash Course A&P #30
CrashCourse/YouTube
5:31
Haemoglobin
Wellcome Trust/YouTube
1:43
Hemoglobin A1c & Diabetes
DiabeTV/YouTube
Hemoglobin Molecule
TheVisualMD
Hemoglobin A1C Molecule
TheVisualMD
Hemoglobin A1C: Red Blood Cells
TheVisualMD
Hemoglobin of Red Blood Cell
TheVisualMD
Hemoglobin Molecule
TheVisualMD
Hemoglobin Molecule Heme Group
TheVisualMD
0:27
Hemoglobin Within Red Blood Cell (RBC)
TheVisualMD
Hemoglobin, Carbon Monoxide
TheVisualMD
0:27
Hemoglobin A1c
TheVisualMD
Hemoglobin A1c
TheVisualMD
Hemoglobin: O2 Binding Hemoglobin
TheVisualMD
HemoglobinA1C
TheVisualMD
Hematocrit
Hematocrit Blood Test
Also called: Hematocrit, HCT, Crit, Packed Cell Volume, PCV
Hematocrit is a blood test that measures how much of a person's blood is made up of red blood cells. Hematocrit levels that are too high or too low can be a sign of a blood disorder, dehydration, or other medical conditions that affect your blood.
Hematocrit Blood Test
Also called: Hematocrit, HCT, Crit, Packed Cell Volume, PCV
Hematocrit is a blood test that measures how much of a person's blood is made up of red blood cells. Hematocrit levels that are too high or too low can be a sign of a blood disorder, dehydration, or other medical conditions that affect your blood.
{"label":"Hematocrit reference range","scale":"lin","step":0.1,"hideunits":false,"items":[{"flag":"abnormal","label":{"short":"Low","long":"Low","orientation":"horizontal"},"values":{"min":0,"max":40.7},"text":"A hematocrit level below the normal range, meaning the person has too few red blood cells, is called anemia.","conditions":["Anemia","Bleeding","Bone marrow cancers and disorders","Chronic illness","Chronic kidney disease","Destruction of red blood cells (hemolysis)","Leukemia","Malnutrition","Too little iron, folate, vitamin B12, and vitamin B6 in the diet","Too much water in the body"]},{"flag":"normal","label":{"short":"Normal","long":"Normal","orientation":"horizontal"},"values":{"min":40.7,"max":50.3},"text":"Normal hematocrit levels vary based on age and race. In adults, normal levels for men range from 41%-50%. For women, the normal range is slightly lower: 36%-44%.","conditions":[]},{"flag":"abnormal","label":{"short":"High","long":"High","orientation":"horizontal"},"values":{"min":50.3,"max":100},"text":"A hematocrit level above the normal range, meaning too many red blood cells, may indicate polycythemia or erythrocytosis. High hematocrits can be seen in people living at high altitudes and in chronic smokers.","conditions":["Polycythemia vera","Congenital heart disease","Exposure to high altitude","Failure of the right side of the heart","Low levels of oxygen in the blood","Scarring or thickening of the lungs","Too little water in the body (dehydration)"]}],"units":[{"printSymbol":"%","code":"%","name":"percent"}],"value":45.5}[{"abnormal":0},{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
%
40.7
50.3
Your result is Normal.
Normal hematocrit levels vary based on age and race. In adults, normal levels for men range from 41%-50%. For women, the normal range is slightly lower: 36%-44%.
Related conditions
A hematocrit test is a blood test that measures how much of your blood is made up of red blood cells. Red blood cells carry oxygen from your lungs to the rest of your body. The other parts of your blood include white blood cells (to help fight infection), platelets (to help make blood clots to stop bleeding), and a liquid called plasma.
Hematocrit levels that are too high or too low can be a sign of a blood disorder, dehydration, or other medical conditions that affect your blood.
Other names: HCT, packed cell volume, PCV, Crit; H and H (Hemoglobin and Hematocrit)
A hematocrit test is often part of a complete blood count (CBC). A CBC is a common blood test that measures the different parts of your blood. It is used to check your general health. It may also be used to help diagnose blood disorders, including anemia, a condition in which you don't have enough red blood cells, and polycythemia, an uncommon disorder in which you have too many red blood cells and your blood becomes too thick.
Your health care provider may order a hematocrit test as part of your regular checkup or to monitor your health if you are being treated for cancer or have an ongoing health condition. Your provider may also order this test if you have symptoms of a red blood cell disorder, such as anemia or polycythemia:
Symptoms of anemia (too few red blood cells) may include:
Shortness of breath
Weakness or fatigue
Headache
Dizziness
Arrhythmia (a problem with the rate or rhythm of your heartbeat)
Symptoms of polycythemia (too many red blood cells) may include:
Headache
Feeling light-headed or dizzy
Shortness of breath
Weakness or fatigue
Skin symptoms such as itching after a shower or bath, burning, or a red face
Heavy sweating, especially during sleep
Blurred or double vision and blind spots
Bleeding gums and heavy bleeding from small cuts
A health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
You don't need any special preparations for a hematocrit test. If your provider has ordered more tests on your blood sample, you may need to fast (not eat or drink) for several hours before the test. Your provider will let you know if there are any special instructions to follow.
There is very little risk to having a hematocrit test or other type of blood test. You may have slight pain or bruising at the spot where the needle was put in, but most symptoms go away quickly.
Your hematocrit test results are reported as a number. That number is the percentage of your blood that's made of red blood cells. For example, if your hematocrit test result is 42, it means that 42% of your blood is red blood cells and the rest is white blood cells, platelets, and blood plasma.
A hematocrit level that's lower than normal may be a sign that:
Your body doesn't have enough red blood cells (anemia). There are many types of anemia that can be caused by different medical conditions.
Your body is making too many white blood cells, which may be caused by:
Bone marrow disease
Certain cancers, including leukemia, lymphoma, multiple myeloma, or cancers that spread to the bone marrow from other parts of the body
A hematocrit level that's higher than normal may be a sign that:
Your body is making too many red blood cells, which may be caused by:
Lung disease
Congenital heart disease
Heart failure
Polycythemia
Your blood plasma level is too low, which may be caused by:
Dehydration, the most common cause of a high hematocrit
Shock
If your results are not in the normal range, it doesn't always mean that you have a medical condition that needs treatment. Living at high altitudes where there's less oxygen in the air may cause a high hematocrit. That's because your body responds to low oxygen levels by making more red blood cells so that you get the oxygen you need.
Pregnancy can cause a low hematocrit. That's because the body has more fluid than normal during pregnancy, which decreases the percentage that's made of red blood cells.
To learn what your test results mean, talk with your provider.
Normal hematocrit levels will be different depending on your sex, age, and the altitude where you live. Ask your provider what hematocrit level is normal for you.
Hematocrit Test: MedlinePlus Medical Test [accessed on Jan 20, 2024]
Hematocrit: MedlinePlus Medical Encyclopedia [accessed on Jan 20, 2024]
Hematrocit Blood Test - Testing.com. Sep 13, 2022 [accessed on Jan 20, 2024]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (30)
This browser does not support the video element.
Complete Blood Count, and Baselining Your Health
Video Topics : Our lifeblood consists of many components and a complete blood count (CBC) includes measurements of the fundamental elements. The largest categories are red and white blood cells (RBCs and WBCs) and cell fragments called platelets, which play roles in blood clotting. There are 20-30 trillion red blood cells in the body of an adult, each with a lifespan of about 100 days (RBCs contain an iron-containing protein called hemoglobin that enables them to carry oxygen to tissues throughout the body and then return carbon dioxide to the lungs). WBCs are in the front lines in the body's ongoing fight against harmful viruses, bacteria and even fungus; when a pathogen enters the body, WBCs mobilize in a coordinated defense response to eliminate, neutralize or mark the invader for destruction. The liquid portion of blood is called plasma and it carries nutrients, electrolytes, waste products, and hormones.
Video by TheVisualMD
Vial of Centrifuged Blood
Blood is made up of red and white blood cell (as well as platelets), suspended in a liquid known as blood plasma. Plasma, which makes up 55% of our blood's volume, is a clear liquid (mainly water) that transports food molecules, hormones, waste as well as a wide range of dissolved chemicals. Red cells, which normally make up 40-50% of total blood volume, are produced continuously in our bone marrow at the rate of about 2-3 million cells per second. White cells make up a very small part of blood's volume-normally only about 1% in healthy people. This image shows two vials of centrifuged blood. The left vial shows healthy amount of red blood cells in female (36-44%) ; The right vial shows healthy amount of red blood cells in male (41-50%). The hematocrit (along with the hemoglobin test) is the central test to diagnosing anemia in that it indicates the amount of RBCs in the blood.
Image by TheVisualMD
Red Blood Cells, Bone Marrow
A skeleton may have a dry and lifeless Halloween image, but bone is actually dynamic, living tissue. Bone is not uniformly solid; within its interior is a network of cavities that house blood vessels and marrow. Bone marrow, particularly in larger bones, is where stem cells give rise to red blood cells (erythrocytes) as well as white blood cells (leukocytes) and blood clotting agents (platelets). As the source of blood cells, the bone marrow is critical to health. Disease or damage to bone marrow can result in either too many or too few blood cells.
Hematocrit Nursing Considerations, Normal Range, Nursing Care, Lab Values Nursing
Video by NURSINGcom/YouTube
Hematocrit, Dehydration
Blood is composed of cells (primarily red blood cells, but also white blood cells and cell fragments called platelets) along with a liquid portion known as plasma. The ratio of the volume of red blood cells to the volume of plasma is an important health indicator and is known as the hematocrit. The most common cause of a high hematocrit is dehydration, which is usually temporary and easily remedied by increasing fluid intake, thereby restores the balance between RBCs and blood plasma volume.
Image by TheVisualMD
Hematocrit, Anemia
Blood is composed of cells (primarily red blood cells, but also white blood cells and cell fragments called platelets) along with a liquid portion known as plasma. The ratio of the volume of red blood cells to the volume of plasma is an important health indicator and is known as the hematocrit. A low hematocrit usually indicates anemia, which occurs when red blood cells are being either destroyed too quickly or produced too slowly; with fewer red blood cells, less oxygen is delivered to body tissues.
Image by TheVisualMD
Vial of Blood for Hematocrit Test
This image is a vial of blood that has been centrifuged (and thus separated) to determine hematocrit. This vial shows, from top to bottom, 55% plasma, <1% white blood cells, <1% platelets , 45% red blood cells. Hematocrit measures how much of the blood, by volume, is taken up by RBCs. A normal range for hematocrit is 41 to 50 percent in men and 36 to 44 percent in women. In many cases, a reading below the normal range for hematocrit will lead to a diagnosis of CKD-related anemia.This other diagnostic test is the hemoglobin test, which measures the amount of hemoglobin molecules in the blood and is a good indicator of the body's ability to carry oxygen throughout the body.
Image by TheVisualMD
Hematocrit: Bone Marrow
Bone marrow produces about 2 million red blood cells (RBCs) a second to maintain a healthy hematocrit. Many conditions, including kidney disease, chemotherapy, and dietary deficiencies, can reduce RBC production, while others can result in too many RBCs.
Image by TheVisualMD
Hematocrit: Blood Cells
The hematocrit is another way to look at the health of red blood cells (RBCs). Blood is composed of cells (primarily RBCs) and a liquid portion called plasma. The proportions of RBCs and plasma must be kept in balance and this is what the hematocrit measures.
Image by TheVisualMD
Blood
Components of Blood : Blood is mostly made up of plasma and red and white blood cells. But it also contains many other substances as well, like platelets, hormones, nutrients such as glucose, and fats like cholesterol. Blood is the fluid of life, transporting oxygen from the lungs to body tissue and carbon dioxide from body tissue to the lungs.
Image by TheVisualMD
Hematocrit
Hematocrit Blood Vials : If you are at risk for cardiovascular disease, your doctor may order a cholesterol and triglyceride level test as well as a complete blood count (CBC). Abnormal results may be the first clue in determining risk of and in diagnosing cardiovascular disease.
Image by TheVisualMD
Blood Smear Showing Reduced Red Blood Cell Count
Individual blood cells were first detected and described in the 17th century. Later, red blood cells (RBCs) were counted manually from a blood smear, a thin film of blood prepared on a glass slide and examined under a microscope (blood analysis is now automated, though smears are still used to detect visible abnormalities and to check or confirm the results of other tests). Anemia results when there are too few RBCs in circulation because they are being destroyed too quickly or produced too slowly. Anemia can be temporary or long term and range from mild to severe. Folate (also known as vitamin B9) is necessary for red blood cell production and the prevention of anemia, as well as the metabolism of carbohydrates. But folate also plays key roles in the synthesis and maintenance of DNA and is especially important in cell division and growth in fetal development (deficiencies of the vitamin in pregnancy is a common cause of birth defects). Pernicious anemia is a disorder in which the body's loses its ability to utilize folate and vitamin B12.
Image by TheVisualMD
Blood Smear Showing Normal Red Blood Cell Count
Individual blood cells were first detected and described in the 17th century. Later, red blood cells were counted manually from a blood smear, a thin film of blood prepared on a glass slide and examined under a microscope. Blood analysis is now automated, though blood smears are still used to detect visible abnormalities and to check or confirm the results of other tests. There are normally between 4.2-5.8 million red blood cells per microliter (about a drop), which means there are 20-30 trillion red blood cells circulating through the body of an adult.
Image by TheVisualMD
This browser does not support the video element.
Red Blood Cells Carry Oxygen
This video focuses on one of the main components of blood, the red blood cell and its function to carry oxygen. The video begins with revealing the red blood cells and the heart that pumps the oxygenated blood to the rest of the body. Hemoglobin is the protein molecule found in these red blood cells that enable blood to transport oxygen. If the blood's capacity to transport oxygen to the tissues is reduced due to a decrease in the number of red blood cells, anemia may occur.
Video by TheVisualMD
Components of Blood
Components of Blood : Our blood is composed of many different components, the largest categories being red and white blood cells (blood-clotting platelets are another key component) and the liquid portion known as blood plasma. A Complete Blood Count (CBC) includes several of the most basic, yet important, measurements of these components.
Image by TheVisualMD
Blood and Related Conditions
Blood and Related Conditions : Anemia results when there are too few red blood cells circulating in the bloodstream to deliver adequate oxygen to body tissues. There are different types and causes of anemia, including malnutrition, chronic bleeding, and diseases that result in red blood cells either being destroyed too quickly or produced too slowly.
Image by TheVisualMD
Pellet of Lymphocyte Cells Created in the Centrifuge
This photograph shows Wendy Watford, Ph.D. holding a test tube containing isolated lymphocyte cells. The cells were spun in a centrifuge to create a pellet at the bottom of the test tube. The cells will be labeled with CFSE dye, which will stain the membranes of the cells. After culturing the cells for three days she will determine the number of cell divisions that have taken place by measuring the dilution of the CFSE dye. The purpose of the work is to measure the proliferation of lymphocytes under various conditions. The principal investigator for this work is John J. O’Shea, M.D., NIAMS Scientific Director.
Image by NIAMS/Photographer: Rhoda Baer
Red Blood Cells
Digital holographic microscopy (DHM) image of red blood cells.
Image by Egelberg (talk)
Test Tube
Between 5,000 and 8,000 blood serum, fecal, urine, viral and respiratory samples arrive six days a week from U.S. Air Force hospitals and clinics worldwide, as well as some other Department of Defense facilities, for analysis at the Epidemiology Laboratory Service, also known as the "Epi Lab" at the 711th Human Performance Wing’s United States Air Force School of Aerospace Medicine and Public Health at Wright Patterson AFB, Ohio.The lab is a Department of Defense reference laboratory offering clinical diagnostic, public health, and force health screening and testing. (U.S. Air Force photo by J.M. Eddins Jr.)
Image by U.S. Air Force photo by J.M. Eddins Jr.
Phlebotomy
This image was uploaded as part of Wiki Loves e-textbooks contest in Poland.
Image by Sean Michael Ragan
Red Blood Cells Carry Oxygen
This video focuses on one of the main components of blood, the red blood cell and its function to carry oxygen. The video begins with revealing the red blood cells and the heart that pumps the oxygenated blood to the rest of the body. Hemoglobin is the protein molecule found in these red blood cells that enable blood to transport oxygen. If the blood's capacity to transport oxygen to the tissues is reduced due to a decrease in the number of red blood cells, anemia may occur.
Image by TheVisualMD
Composition of Blood
Composition of Blood
Image by OpenStax College
Hematology | Hematocrit
Video by Ninja Nerd/YouTube
Erythrocyte indices (Hemoglobin, Hematocrit, MCV, MCH & MCHC) What Do These Lab Tests Mean?
Video by Medicosis Perfectionalis/YouTube
How to Interpret RBC Indices (e.g. hemoglobin vs. hematocrit, MCV, RDW)
Video by Strong Medicine/YouTube
Haematocrit or PCV
Video by LabsforLifeProject/YouTube
Packed cell volume/ Hematocrit
Video by Pathology Simplified/YouTube
Fetal hemoglobin and hematocrit | Human anatomy and physiology | Health & Medicine | Khan Academy
Also called: MCV, MCV Blood Test, Mean Corpuscular Volume, Mean RBC Volume
A mean corpuscular volume (MCV) blood test measures the size of your red blood cells. If blood cells are too small or too large, it may indicate a blood disorder.
MCV (Mean Corpuscular Volume) Test
Also called: MCV, MCV Blood Test, Mean Corpuscular Volume, Mean RBC Volume
A mean corpuscular volume (MCV) blood test measures the size of your red blood cells. If blood cells are too small or too large, it may indicate a blood disorder.
{"label":"Mean corpuscular volume reference range","scale":"lin","step":0.1,"hideunits":false,"items":[{"flag":"abnormal","label":{"short":"Low","long":"Low","orientation":"horizontal"},"values":{"min":0,"max":76},"text":"A low MCV indicates that the red blood cells are smaller than normal, or microcytic.","conditions":["Microcytic anemia","Iron-deficiency\u00a0anemia\u00a0or other types of anemia","Thalassemia"]},{"flag":"normal","label":{"short":"Normal","long":"Normal","orientation":"horizontal"},"values":{"min":76,"max":96},"text":"A normal MCV indicates that the red blood cells are normal average size, or normocytic. Normal results vary based on the laboratory and the method used.","conditions":[]},{"flag":"abnormal","label":{"short":"High","long":"High","orientation":"horizontal"},"values":{"min":96,"max":200},"text":"A high MCV indicates that the red blood cells are larger than normal, or macrocytic.","conditions":["Macrocytic anemia","Vitamin B12 deficiency","Folic acid deficiency","Liver disease","Hypothyroidism"]}],"units":[{"printSymbol":"fL","code":"fL","name":"femtoliter"}],"value":86}[{"abnormal":0},{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
fL
76
96
Your result is Normal.
A normal MCV indicates that the red blood cells are normal average size, or normocytic. Normal results vary based on the laboratory and the method used.
Related conditions
MCV stands for mean corpuscular volume. An MCV blood test measures the average size of your red blood cells.
Red blood cells carry oxygen from your lungs to every cell in your body. Your cells need oxygen to grow, reproduce, and stay healthy. If your red blood cells are too small or too large, it could be a sign of a blood disorder such as anemia, a lack of certain vitamins, or other medical conditions.
Other names: CBC with differential
An MCV blood test is often part of a complete blood count (CBC). A CBC is a common blood test that measures many parts of your blood, including red blood cells. It is used to check your general health.
An MCV test may also be used with other tests to help diagnose or monitor certain blood disorders, including anemia. There are many types of anemia. An MCV test can help diagnose which type of anemia you have.
Your health care provider may order a complete blood count, which includes an MCV test, as part of your regular checkup. You may also have the test if you have a chronic (long-lasting) condition that could lead to anemia or if you have the symptoms of anemia:
Shortness of breath
Weakness or fatigue
Headache
Dizziness
Arrhythmia (a problem with the rate or rhythm of your heartbeat)
During the test, a health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
You don't need any special preparations for an MCV blood test. If your provider has ordered more tests on your blood sample, you may need to fast (not eat or drink) for several hours before the test. Your provider will let you know if there are any special instructions to follow.
There is very little risk to having a blood test. You may have slight pain or bruising at the spot where the needle was put in, but most symptoms go away quickly.
An MCV test alone cannot diagnose any disease. Your provider will use the results of your MCV, other test results, and your medical history to make a diagnosis.
If your results show that your red blood cells are smaller than normal, it may be a sign of:
Certain types of anemia, including iron-deficiency anemia, the most common type
Thalassemia, an uncommon genetic condition
If your results show that your red blood cells are larger than normal, it may be a sign of:
Pernicious anemia, which may be caused by:
A lack of vitamin B12
A disease that affects your body's ability to use vitamin B12, such as certain autoimmune diseases, celiac disease, or Crohn's disease.
Anemia caused by a lack of folic acid
Liver disease
It's also possible to have anemia with a normal MCV. This may happen if anemia is caused by conditions, such as:
A sudden loss of blood
Kidney failure
Aplastic anemia (uncommon)
If your MCV levels are not in the normal range, it doesn't always mean that you have a medical problem that needs treatment. Diet, activity level, medicines, a menstrual period, and other conditions can affect the test results. Talk with your health care provider to learn what your results mean.
If your provider thinks you may have anemia or another blood disorder, you may have other red blood cell tests with an MCV. These tests may include a red blood cell count and measurements of hemoglobin. All together, these tests are called red blood cell indices.
MCV (Mean Corpuscular Volume): MedlinePlus Medical Test [accessed on Jan 20, 2024]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (22)
Microcytic, normocytic, and macrocytic anemias | NCLEX-RN | Khan Academy
Video by khanacademymedicine/YouTube
Non-megaloblastic Macrocytic Anemia
Video by Medicosis Perfectionalis/YouTube
Microcytic anemia | Hematologic System Diseases | NCLEX-RN | Khan Academy
Video by khanacademymedicine/YouTube
Living with and Managing Iron-Deficiency Anemia
Video by NHLBI/YouTube
Hemolytic Anemia
Video by DrER.tv/YouTube
Medical School - Anemia Made Easy
Video by iMedicalSchool/YouTube
Iron deficency anemia diagnosis | Hematologic System Diseases | NCLEX-RN | Khan Academy
WellnessFX: Red Blood Cell Indices Part 1 with Bryan Walsh
Video by WellnessFX/YouTube
WellnessFX: Red Blood Cell Indices Part 2 with Bryan Walsh
Video by WellnessFX/YouTube
Blood Brain Barrier Endothelium
The blood-brain barrier keeps potentially toxic substances from entering the brain. The semipermeable membrane formed by the tightly spaced cells of capillaries in this area selectively screens out large molecules, while permitting the transport of essential nutrients such as glucose. The endothelium is the cellular lining of the blood vessel and is made up of endothelial cells connected to one another by tight junctions. These are the strongest cell-to-cell adhesions in the body. Toxic materials being transported in the blood are too large to pass through these junctions and exit the blood. Therefore, the brain is protected from exposure to many harmful substances. The barrier is does not, however, prevent fat-soluble materials from entering the brain; this includes alcohol and nicotine.
Image by TheVisualMD
Normal Blood Glucose Levels in Capillary
This image depicts a healthy capillary with normal glucose (pink) and insulin (yellow) levels. Capillaries, the smallest blood vessels in your body, are where nutrients are transferred from blood to cells, and waste from cells to blood. The body's cells depend on sugar in the blood, which is derived from carbohydrates, for food and energy. Allowing for the innumerable differences among individuals, the threshold for a normal blood-sugar (glucose) level in healthy people is 100 mg/dL; that is, 100 milligrams of glucose per deciliter of blood. Lower-than-normal levels characterize hypoglycemia and higher than normal levels characterize hyperglycemia.
Image by TheVisualMD
Cross-Section of Healthy Capillary Blood Vessel with Normal Glucose and Insulin Levels
This image depicts a healthy capillary. Capillaries are the smallest blood vessels in your body and are where the transfer of nutrients from blood to cells and wastes from cells to the blood takes place.The cells of the body depend on sugar in the blood, derived from carbohydrates, for food and energy. Allowing for the innumerable differences among individuals, the threshold for a normal blood-sugar (glucose) level in healthy people is 100 mg/dL; that is, 100 milligrams of glucose per deciliter of blood. Lower-than-normal levels characterize hypoglycemia and higher than normal levels hyperglycemia.
Image by TheVisualMD
Blood Vessels in the Brain
The Blood Brain Barrier and Astrocytes type 1
Image by Ben Brahim Mohammed
Cross-Section of Damaged Capillary Blood Vessel with Very High Glucose and Insulin Levels
This image depicts an unhealthy, damaged capillary with very high levels of insulin and glucose. Capillaries, the smallest blood vessels in your body, are where nutrients are transferred from blood to cells, and waste from cells to the blood The body's cells depend on sugar (glucose) in the blood, which is derived from carbohydrates, for food and energy. Without insulin, glucose is not able to enter cells to be used as fuel. Allowing for the innumerable differences among individuals, the threshold for a normal blood-sugar (glucose) level in healthy people is 100 mg/dL; that is, 100 milligrams of glucose per deciliter of blood. Higher than normal levels lead to hyperglycemia. Hyperglycemia is the hallmark of prediabetes (between 100 and 125 mg/dL) and diabetes (126 mg/dL and higher). It is caused by either too little insulin being released by the pancreas or the body's inability to use insulin properly. Hyperglycemia leads to microangiopathy, marked by endothelial cell apoptosis (programmed cell death), accumulation of AGEs (advanced glycation end products), and thickening of the basement membrane, which can lead to development of lesions, vasoconstriction, and altered vessel function
Blood Components
This image highlights the vital components of blood: 55% plasma Plasma is the liquid river that transports every blood cell to its destination. Oxygen-carrying RBCs couldn't move through arteries, veins and capillaries without it. Even though it is a watery, almost clear fluid, plasma contains many important substances, including blood-clotting agents called platelets and protective proteins called antibodies which help us fight infection. When the clotting agents are removed from blood plasma, it is called serum, which is essential in many life-saving medical situations such as transplant surgery and trauma. <1% white blood cells (wbcs or leukocytes) Some leukocytes are produced in the bone marrow, while others are generated in lymph nodes scattered throughout the body. They are far less numerous than their sister RBCs, but leukocytes are the bedrock of the immune system and are the body's front line of defense. Different types of leukocytes fight infections in different ways. Some target bacterial or fungal infections, while others respond to parasitic threats or allergic reactions. <1% platelets Platelets perform the vital function of clotting blood at wound sites. They are small, even in comparison to the other cells of your blood, but they pack a wallop when it comes to healing a scrape or staunching a more serious wound. When you cut yourself shaving, platelets arrive on the scene like your personal emergency medical team, creating a natural bandage of clotted blood, which eventually forms a scab. 45% red blood cells rbcs or erythrocytes) RBCs are produced in the bone marrow and perform the fundamental task of delivering oxygen to all of the body's cells. The vial is an example of the hematocrit, one of many tests that make up the complete blood count (CBC). Hematocrit measures the volume of RBCs in your blood. A normal hematocrit reading for women is between 36 to 44 percent; for men it's 41 to 50 percent.
Image by TheVisualMD
Test Tube Containing Blood
Visualization of a test tube containing blood. Blood comprises of 55% plasma, 1% platelets and white blood cells, and 45% red blood cells.
Image by TheVisualMD
Blood Smear Showing Reduced Red Blood Cell Count
Individual blood cells were first detected and described in the 17th century. Later, red blood cells (RBCs) were counted manually from a blood smear, a thin film of blood prepared on a glass slide and examined under a microscope (blood analysis is now automated, though smears are still used to detect visible abnormalities and to check or confirm the results of other tests). Anemia results when there are too few RBCs in circulation because they are being destroyed too quickly or produced too slowly. Anemia can be temporary or long term and range from mild to severe. Folate (also known as vitamin B9) is necessary for red blood cell production and the prevention of anemia, as well as the metabolism of carbohydrates. But folate also plays key roles in the synthesis and maintenance of DNA and is especially important in cell division and growth in fetal development (deficiencies of the vitamin in pregnancy is a common cause of birth defects). Pernicious anemia is a disorder in which the body's loses its ability to utilize folate and vitamin B12.
Image by TheVisualMD
Red Blood Cell in Capillary
The cardiovascular system is vast network of arteries, veins and vessels that would extend 60,000 miles if stretched end-to-end. All but a tiny fraction of this vessel network is invisible to the naked eye. The smallest capillaries (from latin "hairlike") are so narrow that red blood cells must pass through in single file. Higher than normal blood iron levels have been linked to heart disease and the reason is believed to be the oxidative stress the excess iron places on the walls of the blood vessels. It is the biological counterpart of rust. There are 20-30 trillion red blood cells (RBCs) in an adult's body. The life span of RBCs, which are produced in bone marrow, is about 100 days, which means that 2 million die (and are replaced) each second, but in that short lifetime they can make 75,000 round trips between lungs, heart and tissues in the body.
Image by TheVisualMD
Kidney and Stem Cell Creating Red Blood Cell. B12 is critical for the creation of red blood cells.
We are used to thinking of our kidneys mostly as hardworking filters that rid our bodies of wastes and excess water. But the kidneys are also constantly monitoring and adjusting levels of key substances in the blood, depending on what the body needs. Specialized cells in the kidney that are very sensitive to low oxygen levels, for example, produce a hormone called erythropoietin (EPO), which in turn promotes the production of red blood cells in the bone marrow. The boost in red blood cells increases the oxygen-carrying capacity of the blood.
Image by TheVisualMD
Healthy Capillary Blood Vessel
Cross-section of Healthy Capillary Blood Vessel with Normal Glucose and Insulin Levels
Cross-Section of Damaged Capillary Blood Vessel with Very High Glucose and Insulin Levels
1
2
3
Healthy Capillary Blood Vessel and and Damaged Capillary Blood Vessel Caused by High Levels of Blood Glucose
1) Healthy Capillary Blood Vessel - This image depicts a healthy capillary. Capillaries are the smallest blood vessels in your body. They can be so thin in diameter that blood cells have to bend in order to pass through. Capillaries are where the transfer of nutrients from the blood to cells, and the transfer of waste from cells to blood, takes place. In a healthy body, the blood vessels are smooth and elastic.
2) Cross-Section of Healthy Capillary Blood Vessel with Normal Glucose and Insulin Levels - This image depicts a healthy capillary. The body's cells depend on sugar in the blood, which is derived from carbohydrates, for food and energy. Allowing for the innumerable differences among individuals, the threshold for a normal blood sugar (glucose, pink) level in healthy people is 100 mg/dL; that is, 100 milligrams of glucose per deciliter of blood. Lower-than-normal levels characterize hypoglycemia and higher-than-normal levels characterize hyperglycemia. Without insulin (yellow), glucose is not able to enter cells to be used as fuel. Because of this, healthy insulin levels are a key factor in keeping blood glucose levels normal.
3) Cross-Section of Damaged Capillary Blood Vessel with Very High Glucose and Insulin Levels - This image depicts an unhealthy, damaged capillary with very high levels of insulin and glucose. Higher than normal levels of blood glucose lead to hyperglycemia. Hyperglycemia is the hallmark of prediabetes (between 100 and 125 mg/dL) and diabetes (126 mg/dL and higher). It is caused by either too little insulin being released by the pancreas or the body's inability to use insulin properly. Hyperglycemia leads to microangiopathy, marked by endothelial cell apoptosis (programmed cell death), accumulation of AGEs (advanced glycation end products), and thickening of the basement membrane, which can lead to the development of lesions, vasoconstriction, and altered vessel function
Interactive by TheVisualMD
5:57
Microcytic, normocytic, and macrocytic anemias | NCLEX-RN | Khan Academy
khanacademymedicine/YouTube
4:39
Non-megaloblastic Macrocytic Anemia
Medicosis Perfectionalis/YouTube
9:42
Microcytic anemia | Hematologic System Diseases | NCLEX-RN | Khan Academy
khanacademymedicine/YouTube
3:56
Living with and Managing Iron-Deficiency Anemia
NHLBI/YouTube
3:24
Hemolytic Anemia
DrER.tv/YouTube
3:16
Medical School - Anemia Made Easy
iMedicalSchool/YouTube
9:54
Iron deficency anemia diagnosis | Hematologic System Diseases | NCLEX-RN | Khan Academy
WellnessFX: Red Blood Cell Indices Part 1 with Bryan Walsh
WellnessFX/YouTube
28:05
WellnessFX: Red Blood Cell Indices Part 2 with Bryan Walsh
WellnessFX/YouTube
Blood Brain Barrier Endothelium
TheVisualMD
Normal Blood Glucose Levels in Capillary
TheVisualMD
Cross-Section of Healthy Capillary Blood Vessel with Normal Glucose and Insulin Levels
TheVisualMD
Blood Vessels in the Brain
Ben Brahim Mohammed
Cross-Section of Damaged Capillary Blood Vessel with Very High Glucose and Insulin Levels
Blood Components
TheVisualMD
Test Tube Containing Blood
TheVisualMD
Blood Smear Showing Reduced Red Blood Cell Count
TheVisualMD
Red Blood Cell in Capillary
TheVisualMD
Kidney and Stem Cell Creating Red Blood Cell. B12 is critical for the creation of red blood cells.
TheVisualMD
Healthy Capillary Blood Vessel and and Damaged Capillary Blood Vessel Caused by High Levels of Blood Glucose
TheVisualMD
Staging
4 vials of human cerebrospinal fluid
Image by James Heilman, MD
4 vials of human cerebrospinal fluid
4 vials of human cerebral spinal fluid of normal appearance, collected via lumbar puncture from the L3/L4 disk space.
Image by James Heilman, MD
What Are the Stages of Acute Myeloid Leukemia?
KEY POINTS
Once acute myeloid leukemia (AML) has been diagnosed, tests are done to find out if the cancer has spread to other parts of the body.
There is no standard staging system for AML.
Once acute myeloid leukemia (AML) has been diagnosed, tests are done to find out if the cancer has spread to other parts of the body.
The process used to find out if cancer has spread is called staging. In acute myeloid leukemia (AML), the subtype of AML and whether the leukemia has spread outside the blood and bone marrow are used instead of the stage to plan treatment.
The following tests and procedures may be used to determine if the leukemia has spread:
Lumbar puncture: A procedure used to collect a sample of cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs that leukemia cells have spread to the brain and spinal cord. This procedure is also called an LP or spinal tap.
CT scan (CAT scan): A procedure that makes a series of detailed pictures of the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organ or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography.
There is no standard staging system for AML.
The disease is described as untreated, in remission, refractory, or recurrent.
Newly diagnosed (untreated) AML
In untreated AML, the disease is newly diagnosed. It has not been treated except to relieve signs and symptoms such as fever, bleeding, or pain, and the following are true:
The complete blood count is abnormal.
At least 20% of the cells in the bone marrow are blasts (leukemia cells) or there are certain gene changes.
There are signs or symptoms of leukemia.
AML in remission
In AML in remission, the disease has been treated and the following are true:
The complete blood count is normal.
Less than 5% of the cells in the bone marrow are blasts (leukemia cells).
There are no signs or symptoms of leukemia in the brain and spinal cord or elsewhere in the body.
Refractory or recurrent AML
After treatment with chemotherapy, some patients with newly diagnosed AML will not go into remission. This is called refractory cancer. In contrast, recurrent AML is cancer that has recurred (come back) after remission. The AML may come back in the blood or bone marrow.
Source: PDQ® Adult Treatment Editorial Board. PDQ Acute Myeloid Leukemia Treatment. Bethesda, MD: National Cancer Institute.
Additional Materials (2)
Acute leukemia | Hematologic System Diseases | NCLEX-RN | Khan Academy
Video by khanacademymedicine/YouTube
Diagram showing the cells in which AML starts
Diagram showing the cells in which AML starts
Image by Cancer Research UK / Wikimedia Commons
9:42
Acute leukemia | Hematologic System Diseases | NCLEX-RN | Khan Academy
khanacademymedicine/YouTube
Diagram showing the cells in which AML starts
Cancer Research UK / Wikimedia Commons
Treatment
What To Expect Before a Blood and Marrow Stem Cell Transplant
Image by U.S. Navy photo by Photographer's Mate 2nd Class Chad McNeeley.
What To Expect Before a Blood and Marrow Stem Cell Transplant
Georgetown University Hospital, Washington, D.C. (Dec. 4, 2002) - Surgical technician Amina Sherali places recently transfused bone marrow from Aviation Electronics Technician 1st Class Michael Griffioen into a sterile bag in preparation for transplant. To determine the amount of marrow needed from each donor, a sample is taken during the operation and T-cells are counted. The level of T-cells and the body size of the recipient determine the amount of bone marrow to be harvested. Griffioen is assigned to Precommissioning Unit Ronald Reagan and was matched with an anonymous cancer patient through the Department of Defense Marrow Donor Program. Griffioen chose to donate his bone marrow after participating in a donor drive nine years ago while stationed aboard USS George Washington.
Image by U.S. Navy photo by Photographer's Mate 2nd Class Chad McNeeley.
How Is Acute Myeloid Leukemia Treated?
Treatment Option Overview
KEY POINTS
There are different types of treatment for patients with acute myeloid leukemia (AML).
The treatment of AML usually has two phases.
Patients receive supportive care for side effects of treatment.
The following types of treatment are used:
Chemotherapy
Radiation therapy
Chemotherapy with stem cell transplant
Targeted therapy
Other drug therapy
New types of treatment are being tested in clinical trials.
Treatment for acute myeloid leukemia may cause side effects.
Patients may want to think about taking part in a clinical trial.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Follow-up tests may be needed.
There are different types of treatment for patients with acute myeloid leukemia (AML).
Different types of treatment are available for patients with acute myeloid leukemia (AML). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
The treatment of AML usually has two phases.
The two treatment phases of AML are:
Remission induction therapy: This is the first phase of treatment. The goal is to kill the leukemia cells in the blood and bone marrow. This puts the leukemia into remission.
Postremission therapy: This is the second phase of treatment. It begins after the leukemia is in remission. The goal of postremission therapy is to kill any remaining leukemia cells that may not be active but could begin to regrow and cause a relapse. This phase is also called remission continuation therapy.
Patients receive supportive care for side effects of treatment.
Patients must be closely monitored during treatment of AML. Myelosuppression, a condition which results in fewer red blood cells, white blood cells, and platelets, is a side effect of both AML and treatment with chemotherapy. Supportive care during remission induction therapy may include:
Red blood cell and platelet transfusions.
Antibiotics and antifungals for treatment of infections.
The following types of treatment are used:
Chemotherapy
Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid (intrathecal chemotherapy), an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Intrathecal chemotherapy may be used to treat adult AML that has spread to the brain and spinal cord. Combination chemotherapy is treatment using more than one anticancer drug.
The way the chemotherapy is given depends on the subtype of AML being treated and whether leukemia cells have spread to the brain and spinal cord.
Radiation therapy
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Total-body irradiation sends radiation toward the whole body. It is a type of external radiation that may be used to prepare the body for a stem cell transplant when the leukemia has recurred.
Chemotherapy with stem cell transplant
High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy and/or total-body irradiation, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells.
Targeted therapy
Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. There are different types of targeted therapy.
Monoclonal antibodies: immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells.
Gemtuzumab ozogamicin is a type of antibody-drug conjugate used to treat patients with newly diagnosed or relapsed AML. It contains a monoclonal antibody that binds to CD33, which is found on some leukemia cells, and also contains a toxic substance, which may help kill cancer cells.
Other targeted therapies include:
Midostaurin: a protein kinase inhibitor used with certain types of chemotherapy to treat newly diagnosed patients with AML that has a mutation in the FLT3 gene.
Gilteritinib: a tyrosine kinase inhibitor that may be used to treat patients with AML that has come back or did not get better with other treatment and has a mutation in the FLT3 gene.
Less-intensive targeted therapies in older or frail patients who cannot receive other treatments include:
Glasdegib plus low-dose chemotherapy.
Ivosidenib with or without low-dose chemotherapy for patients with AML that has a mutation in the IDH1 gene.
Enasidenib for patients with AML that has a mutation in the IDH2 gene.
Other drug therapy
Arsenic trioxide and all-trans retinoic acid (ATRA) are anticancer drugs that kill leukemia cells, stop the leukemia cells from dividing, or help the leukemia cells mature into white blood cells. These drugs are used in the treatment of a subtype of AML called acute promyelocytic leukemia.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment.
Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment.
Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment.
Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests.
Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Treatment of Untreated Acute Myeloid Leukemia
Standard treatment of untreated acute myeloid leukemia (AML) during the remission induction phase depends on the subtype of AML and may include the following:
Combination chemotherapy.
Combination chemotherapy with midostaurin, for patients whose AML has a mutation (change) in the FLT3 gene.
Combination chemotherapy with gemtuzumab ozogamicin, an antibody-drug conjugate.
Intrathecal chemotherapy may be used to treat central nervous system (CNS) leukemia.
Supportive care.
For older adults or patients too frail to receive intensive chemotherapy, the following may be continued as long as the patient benefits or until toxic effects occur:
Targeted therapy.
Low-dose chemotherapy.
Targeted therapy with low-dose chemotherapy.
Intrathecal chemotherapy may be used to treat CNS leukemia.
Supportive care.
Treatment of Acute Myeloid Leukemia in Remission
Treatment of acute myeloid leukemia (AML) during the remission phase depends on the subtype of AML and may include the following:
Combination chemotherapy.
Maintenance therapy with midostaurin, for patients whose AML has a mutated (changed) form of the FLT3 gene.
Maintenance therapy with chemotherapy.
High-dose chemotherapy and stem cell transplant using the patient's stem cells.
High-dose chemotherapy, with or without radiation therapy, or reduced-intensity therapy, followed by a stem cell transplant using donor stem cells.
Treatment of Refractory or Recurrent Acute Myeloid Leukemia
There is no standard treatment for refractory or recurrent acute myeloid leukemia (AML). Treatment depends on the subtype of AML and may include the following:
Chemotherapy.
Targeted therapy with gilteritinib, enasidenib, or ivosidenib.
Gemtuzumab ozogamicin, a type of antibody-drug conjugate.
Stem cell transplant using donor stem cells.
Treatment of Acute Promyelocytic Leukemia (APL)
Treatment of newly diagnosed acute promyelocytic leukemia (APL) includes:
All-trans retinoic acid (ATRA) plus arsenic trioxide (ATO) for low-risk to intermediate-risk disease.
ATRA plus combination chemotherapy followed by ATO for high-risk disease.
Treatment of Recurrent Acute Promyelocytic Leukemia (APL)
Treatment of recurrent acute promyelocytic leukemia includes:
Arsenic trioxide (ATO) with or without chemotherapy.
Stem cell transplant using the patient's stem cells or donor stem cells.
Source: PDQ® Adult Treatment Editorial Board. PDQ Acute Myeloid Leukemia Treatment. Bethesda, MD: National Cancer Institute.
Additional Materials (5)
Cancer stem cells model
Use your own Stem Cells to heal yourself.
A Sports and Regenerative Medicine Center of Excellence
Beverly Hills Stem Cеllѕ оffеrs a viable аltеrnаtivе fоr individuals ѕuffеring frоm jоint раin or who may bе соnѕidеring еlесtivе ѕurgеrу or joint rерlасеmеnt due tо injurу оr аrthritiѕ. Pаtiеntѕ avoid thе lеngthу periods оf downtime and раinful rеhаbilitаtiоn that typically fоllоw invаѕivе ѕurgеriеѕ. Why operate when you can rejuvenate!
Dennis M Lox M.D. is one of the earliest pioneers to do Stem Cell Therapy in the United States. Each patient is evaluated individually, providing personalized Stem Cell Treatment and Medicine to ensure your well-being.
Since 1990, Dr. Lox has been helping patients increase their quality of life by reducing their pain. He emphasizes non-surgical treatments and appropriate use of medications, if needed.
Many patients are turning to stem cell therapy as a means of nonsurgical joint pain Dr. Lox Regenerative Medicinerelief when their mobility and quality of life are severely affected by conditions like osteoarthritis, torn tendons, and injured ligaments. Dr. Lox specializes in this progressive, innovative treatment that may be able to help you return to an active, fulfilling life.
Stem cell therapy for joint injuries and osteoarthritis is suited for many individuals, from professional athletes to active seniors. Adult mesenchymal stem cells, not embryonic stem cells, are used in this procedure, which is performed right in the comfort of Dr. Lox’s state-of-the-art clinic. The cells are simply extracted from the patient’s own body (typically from bone marrow or adipose/ fat tissue), processed in our office, and injected directly into the site of injury. Conditions that can be addressed with stem cell treatment include osteoarthritis, degenerative disc disease, knee joint issues (such as meniscus tears), shoulder damage (such as rotator cuff injuries), hip problems (such as labral tears), and tendonitis, among others Dennis M Lox. For many patients, a stem cell procedure in the knee, hip, shoulder, or another area of the body relieves pain, increases mobility, and may be able to delay or eliminate the need for more aggressive treatments like joint replacement surgery.
If you have questions about adult stem cell therapy for joint injuries and arthritis, how the procedure is performed, and how the stem cells work to repair injured joints and tissues, Dr. Lox would be happy to educate you about the entire process.
If your in pain or had an injury and are looking for an alternative to surgery, contact us immediately at one of our locations. Our Main Medical Center located in Tampa Bay, Florida (727) 462-5582 or at Beverly Hills, California (310) 975-7033.cancer stem cells model
Image by Malymajo/Wikimedia
Doctor-preparing-to-perform-stem-cell-therapy
Doctor performing CO2 Fractional laser resurfacing on a patient
Image by [Alice Pien, MD]/Wikimedia
Expanded treatment options for Acute Myeloid Leukemia (AML)
Video by Dana-Farber Cancer Institute/YouTube
Who Needs a Blood and Marrow Stem Cell Transplant?
The picture shows a bone marrow transplantation.
Image by beat_ranger
Bone marrow: acute myeloblastic leukemia without maturation (AML-M1)
Agranular myeloblasts in a bone marrow smear from a patient with AML-M1 showing variation in size, amount of cytoplasm, and degree of cytoplasmic basophilia. (Wright-Giemsa stain)
Image by The Armed Forces Institute of Pathology (AFIP)
Cancer stem cells model
Malymajo/Wikimedia
Doctor-preparing-to-perform-stem-cell-therapy
[Alice Pien, MD]/Wikimedia
2:05
Expanded treatment options for Acute Myeloid Leukemia (AML)
Dana-Farber Cancer Institute/YouTube
Who Needs a Blood and Marrow Stem Cell Transplant?
beat_ranger
Bone marrow: acute myeloblastic leukemia without maturation (AML-M1)
The Armed Forces Institute of Pathology (AFIP)
Drugs Approved for Acute Myeloid Leukemia (AML)
Chemotherapy
Image by Bill Branson (Photographer)
Chemotherapy
Variety of chemotherapy drugs in a dripping IV bottle.
Image by Bill Branson (Photographer)
Drugs Approved for Acute Myeloid Leukemia (AML)
This page lists cancer drugs approved by the Food and Drug Administration (FDA) for leukemia. The list includes generic and brand names. This page also lists common drug combinations used in leukemia. The individual drugs in the combinations are FDA-approved. However, drug combinations themselves usually are not approved, but are widely used.
Drugs Approved for Acute Myeloid Leukemia (AML)
Arsenic Trioxide
Azacitidine
Cerubidine (Daunorubicin Hydrochloride)
Cyclophosphamide
Cytarabine
Daunorubicin Hydrochloride
Daunorubicin Hydrochloride and Cytarabine Liposome
Daurismo (Glasdegib Maleate)
Dexamethasone
Doxorubicin Hydrochloride
Enasidenib Mesylate
Gemtuzumab Ozogamicin
Gilteritinib Fumarate
Glasdegib Maleate
Idamycin PFS (Idarubicin Hydrochloride)
Idarubicin Hydrochloride
Idhifa (Enasidenib Mesylate)
Ivosidenib
Midostaurin
Mitoxantrone Hydrochloride
Mylotarg (Gemtuzumab Ozogamicin)
Olutasidenib
Onureg (Azacitidine)
Pemazyre (Pemigatinib)
Pemigatinib
Prednisone
Quizartinib Dihydrochloride
Rezlidhia (Olutasidenib)
Rituxan (Rituximab)
Rituximab
Rubidomycin (Daunorubicin Hydrochloride)
Rydapt (Midostaurin)
Tabloid (Thioguanine)
Thioguanine
Tibsovo (Ivosidenib)
Tisagenlecleucel (Kymriah)
Trisenox (Arsenic Trioxide)
Vanflyta (Quizartinib Dihydrochloride)
Venclexta (Venetoclax)
Venetoclax
Vincristine Sulfate
Vyxeos (Daunorubicin Hydrochloride and Cytarabine Liposome)
Xospata (Gilteritinib Fumarate)
Drug Combinations Used in Acute Myeloid Leukemia (AML)
ADE
Source: National Cancer Institute (NCI)
Prognosis
Catheter for Chemotherapy
Image by National Cancer Institute / Rhoda Baer (Photographer)
Catheter for Chemotherapy
A close-up view of a catheter (a soft thin tube) placed in an African-American woman's arm to deliver chemotherapy.
Image by National Cancer Institute / Rhoda Baer (Photographer)
What Affects the Prognosis for Acute Myeloid Leukemia?
Certain factors affect prognosis (chance of recovery) and treatment options.
The prognosis and treatment options depend on the following:
The age of the patient. Older age at diagnosis may be linked to lower remission rates and more complications.
Whether the leukemia has spread to the central nervous system.
Whether the patient has a systemic infection at the time of diagnosis.
Whether the patient has a very high white blood cell count at the time of diagnosis.
The subtype of AML.
Whether the patient received chemotherapy or radiation therapy in the past to treat a different cancer.
Whether there is a history of a blood disorder such as myelodysplastic syndrome.
Whether the cancer has been treated before or recurred (come back).
It is important that acute leukemia be treated right away.
Source: PDQ® Adult Treatment Editorial Board. PDQ Acute Myeloid Leukemia Treatment. Bethesda, MD: National Cancer Institute.
Additional Materials (8)
Chemotherapy IV
Seen are two hands manipulating an IV for chemotherapy administration to a black patient.
Image by National Cancer Institute / Linda Bartlett (Photographer)
Nurse Administers Chemotherapy
An Asian female nurse administers chemotherapy to an African-American woman through a catheter in her left arm.
Image by National Cancer Institute / Rhoda Baer (Photographer)
Chemotherapy Vials
Variety of chemotherapy drugs in vials.
Image by Bill Branson (Photographer) / National Cancer Institute
Medical Marijuana and Chemotherapy vials
Medical Marijuana and Chemotherapy vials
Image by Bill Branson (Photographer) / Medical Marijuana Icon StoryMD
Patient Receives Chemotherapy
A Hispanic male patient receives Chemotherapy from a African-American Nurse through a port that is placed in his chest area. A caucasian female nurse looks on.
Image by National Cancer Institute / Rhoda Baer (Photographer)
Treatment of Acute Myeloid Leukemia (AML)
Video by Medicosis Perfectionalis/YouTube
Acute Myeloid Leukemia | Clinical Presentation
Video by Medscape/YouTube
Pathway of stem cell differentiation
Pathway of stem cell differentiationFunding from the NIH Office of Research and Structured Programs (ORIP) to the Wisconsin National Primate Research Center to explore stem cell related solutions for Parkinson's disease."
Image by US Gov
Chemotherapy IV
National Cancer Institute / Linda Bartlett (Photographer)
Nurse Administers Chemotherapy
National Cancer Institute / Rhoda Baer (Photographer)
Chemotherapy Vials
Bill Branson (Photographer) / National Cancer Institute
Medical Marijuana and Chemotherapy vials
Bill Branson (Photographer) / Medical Marijuana Icon StoryMD
Patient Receives Chemotherapy
National Cancer Institute / Rhoda Baer (Photographer)
Send this HealthJournal to your friends or across your social medias.
Acute Myeloid Leukemia
Acute Myeloid Leukemia (AML) is a cancer of the blood cells. In AML, the bone marrow makes abnormal myeloblasts (a type of white blood cell), red blood cells, or platelets. When the abnormal cells crowd out the healthy cells, it can lead to infection, anemia, and easy bleeding. AML usually gets worse quickly if it is not treated. Read more.