The erythrocyte, commonly known as a red blood cell (or RBC), is by far the most common formed element: a single drop of blood contains millions of erythrocytes and just thousands of leukocytes.
Blood Smear Showing Normal Red Blood Cell Count
Image by TheVisualMD
Erythrocytes
A computer graphics depiction of a human red blood cell on a glass surface.
Image by Rogeriopfm
A computer graphics depiction of a human red blood cell on a glass surface.
A computer graphics depiction of a human red blood cell on a glass surface.
Image by Rogeriopfm
Erythrocytes
The erythrocyte , commonly known as a red blood cell (or RBC), is by far the most common formed element: A single drop of blood contains millions of erythrocytes and just thousands of leukocytes. Specifically, males have about 5.4 million erythrocytes per microliter (µL) of blood, and females have approximately 4.8 million per µL. In fact, erythrocytes are estimated to make up about 25 percent of the total cells in the body. As you can imagine, they are quite small cells, with a mean diameter of only about 7–8 micrometers (µm) (image). The primary functions of erythrocytes are to pick up inhaled oxygen from the lungs and transport it to the body’s tissues, and to pick up some (about 24 percent) carbon dioxide waste at the tissues and transport it to the lungs for exhalation. Erythrocytes remain within the vascular network. Although leukocytes typically leave the blood vessels to perform their defensive functions, movement of erythrocytes from the blood vessels is abnormal.
The most abundant formed elements in blood, erythrocytes are red, biconcave disks packed with an oxygen-carrying compound called hemoglobin. The hemoglobin molecule contains four globin proteins bound to a pigment molecule called heme, which contains an ion of iron. In the bloodstream, iron picks up oxygen in the lungs and drops it off in the tissues; the amino acids in hemoglobin then transport carbon dioxide from the tissues back to the lungs. Erythrocytes live only 120 days on average, and thus must be continually replaced. Worn-out erythrocytes are phagocytized by macrophages and their hemoglobin is broken down. The breakdown products are recycled or removed as wastes: Globin is broken down into amino acids for synthesis of new proteins; iron is stored in the liver or spleen or used by the bone marrow for production of new erythrocytes; and the remnants of heme are converted into bilirubin, or other waste products that are taken up by the liver and excreted in the bile or removed by the kidneys. Anemia is a deficiency of RBCs or hemoglobin, whereas polycythemia is an excess of RBCs.
Source: CNX OpenStax
Additional Materials (6)
What are Erythrocytes? (Red Blood Cells)
Video by healthery/YouTube
Blood, Part 1 - True Blood: Crash Course A&P #29
Video by CrashCourse/YouTube
Haematology - Red Blood Cells
Video by Armando Hasudungan/YouTube
Red Blood Cell Life Cycle and Disorders, Animation
Video by Alila Medical Media/YouTube
What Are the Components of Blood?
Video by Seeker/YouTube
White and Red Blood Cells
White and Red Blood Cells
Image by TheVisualMD
2:18
What are Erythrocytes? (Red Blood Cells)
healthery/YouTube
10:00
Blood, Part 1 - True Blood: Crash Course A&P #29
CrashCourse/YouTube
9:29
Haematology - Red Blood Cells
Armando Hasudungan/YouTube
4:25
Red Blood Cell Life Cycle and Disorders, Animation
Alila Medical Media/YouTube
7:56
What Are the Components of Blood?
Seeker/YouTube
White and Red Blood Cells
TheVisualMD
Shape & Structure
Red Blood Cells
Image by NHLBI
Red Blood Cells
Figure shows normal red blood cells flowing freely in a blood vessel. The inset image shows a cross-section of a normal red blood cell with normal hemoglobin.
Image by NHLBI
Shape and Structure of Erythrocytes
As an erythrocyte matures in the red bone marrow, it extrudes its nucleus and most of its other organelles. During the first day or two that it is in the circulation, an immature erythrocyte, known as a reticulocyte, will still typically contain remnants of organelles. Reticulocytes should comprise approximately 1–2 percent of the erythrocyte count and provide a rough estimate of the rate of RBC production, with abnormally low or high rates indicating deviations in the production of these cells. These remnants, primarily of networks (reticulum) of ribosomes, are quickly shed, however, and mature, circulating erythrocytes have few internal cellular structural components. Lacking mitochondria, for example, they rely on anaerobic respiration. This means that they do not utilize any of the oxygen they are transporting, so they can deliver it all to the tissues. They also lack endoplasmic reticula and do not synthesize proteins. Erythrocytes do, however, contain some structural proteins that help the blood cells maintain their unique structure and enable them to change their shape to squeeze through capillaries. This includes the protein spectrin, a cytoskeletal protein element.
Erythrocytes are biconcave disks; that is, they are plump at their periphery and very thin in the center (image). Since they lack most organelles, there is more interior space for the presence of the hemoglobin molecules that, as you will see shortly, transport gases. The biconcave shape also provides a greater surface area across which gas exchange can occur, relative to its volume; a sphere of a similar diameter would have a lower surface area-to-volume ratio. In the capillaries, the oxygen carried by the erythrocytes can diffuse into the plasma and then through the capillary walls to reach the cells, whereas some of the carbon dioxide produced by the cells as a waste product diffuses into the capillaries to be picked up by the erythrocytes. Capillary beds are extremely narrow, slowing the passage of the erythrocytes and providing an extended opportunity for gas exchange to occur. However, the space within capillaries can be so minute that, despite their own small size, erythrocytes may have to fold in on themselves if they are to make their way through. Fortunately, their structural proteins like spectrin are flexible, allowing them to bend over themselves to a surprising degree, then spring back again when they enter a wider vessel. In wider vessels, erythrocytes may stack up much like a roll of coins, forming a rouleaux, from the French word for “roll.”
Shape of Red Blood Cells
Shape of Red Blood Cells Erythrocytes are biconcave discs with very shallow centers. This shape optimizes the ratio of surface area to volume, facilitating gas exchange. It also enables them to fold up as they move through narrow blood vessels.
Source: CNX OpenStax
Additional Materials (9)
Red Blood Cell
The RBC count is a measurement of the number of red blood cells you have in a given volume of blood (a microliter, about a drop); in total, there are 20 to 30 trillion RBCs in your body. RBCs live about 100 days, which means that 2 million die (and are replaced) every second. Red blood cell indices include calculations of average red blood cell size (MCV), the amount of hemoglobin per red blood cell (MCH) and the ratio (MCHC) of hemoglobin to hematocrit (the percentage of blood volume made up of red blood cells).
Image by TheVisualMD
Haematology - Red Blood Cells
Video by Armando Hasudungan/YouTube
What are Erythrocytes? (Red Blood Cells)
Video by healthery/YouTube
5 Amazing Facts about the Red Blood Cell
5 Amazing Facts about the Red Blood Cell : Your kidneys regulate red blood cell production. Red blood cells transport oxygen from the lungs to all the tissues of the body that require it. The kidneys measure oxygen levels in the blood. When they detect below-normal oxygen levels, the kidneys release the hormone erythropoietin (EPO). EPO travels from the kidneys to your bone marrow, where about 95% of blood cells are made. There, EPO binds to receptors in the stem cell walls. This triggers a series of events inside the stem cells that instructs their DNA to transform them into red blood cells. People with kidney failure become anemic because the kidneys no longer make enough EPO to stimulate red blood cell production.
Image by TheVisualMD
Blood Coagulation Tests
At a magnification of 7766X, this 2005 scanning electron microscopic (SEM) image revealed a number of red blood cells (RBCs) found enmeshed in a fibrinous matrix on the luminal surface of an indwelling vascular catheter. Three biconcave RBCs are seen here, enmeshed within the sticky, fibrinous net.
Image by CDC/ Janice Haney Carr
Red Blood Cell
This image shows two red blood cells. The red blood cell is also called an erythrocyte: erythro is Greek for \"red,\" cyte is Latin for \"cell.\" The disc-shaped RBCs have the critical job of transporting oxygen from the lungs to the body's cells and bringing carbon dioxide from the cells back to the lungs to be expelled.
Image by TheVisualMD
Red Blood Cells Delivering Oxygen
Red blood cells deliver oxygen from the lungs to cells throughout the body and carry carbon dioxide from these cells back to the lungs. This continuous exchange is accomplished through a vast network of arteries, veins and vessels that would extend 60,000 miles if stretched end-to-end, enough to circle the globe 3-4 times. All but a tiny fraction of this vessel network is invisible to the naked eye. The smallest capillaries (from the Latin for \"hairlike\") are so narrow that red blood cells must pass through in single file.
Image by TheVisualMD
Red Blood Cell Traveling Through Capillary
Red blood cells travel through a capillary, the smallest blood vessel in the body.
Image by TheVisualMD
Red blood cell
A single drop of blood contains millions of red blood cells which are constantly traveling through the body to deliver oxygen and remove waste. The concave shape of a RBC increases the cells' surface area, which allows them to distribute more oxygen to the body's cells. The shape also enables the cells to bunch together more compactly, helping them travel through the bloodstream more efficiently. Manufactured in the bone marrow, RBCs are continuously produced and broken down. They live for about 120 days in the circulatory system.
Image by TheVisualMD
Red Blood Cell
TheVisualMD
9:29
Haematology - Red Blood Cells
Armando Hasudungan/YouTube
2:18
What are Erythrocytes? (Red Blood Cells)
healthery/YouTube
5 Amazing Facts about the Red Blood Cell
TheVisualMD
Blood Coagulation Tests
CDC/ Janice Haney Carr
Red Blood Cell
TheVisualMD
Red Blood Cells Delivering Oxygen
TheVisualMD
Red Blood Cell Traveling Through Capillary
TheVisualMD
Red blood cell
TheVisualMD
Hemoglobin
Hemoglobin A1C Molecule
Image by TheVisualMD
Hemoglobin A1C Molecule
Hemoglobin is a protein found inside red blood cells that carries oxygen from the lungs to cells throughout the body. Hemoglobin also binds with glucose. Diabetics have too much glucose in the bloodstream and this extra glucose binds (or glycates) with hemoglobin. Glycated hemoglobin usually stays glycated for the life of the red blood cell (about 3 months). Therefore, the percentage of hemoglobin that is glycated (measured as A1C) reflects glucose levels that have affected red blood cells up to 3 months in the past.
Image by TheVisualMD
Hemoglobin
Hemoglobin is a large molecule made up of proteins and iron. It consists of four folded chains of a protein called globin, designated alpha 1 and 2, and beta 1 and 2 (imagea). Each of these globin molecules is bound to a red pigment molecule called heme, which contains an ion of iron (Fe2+) (imageb).
Hemoglobin
Hemoglobin (a) A molecule of hemoglobin contains four globin proteins, each of which is bound to one molecule of the iron-containing pigment heme. (b) A single erythrocyte can contain 300 million hemoglobin molecules, and thus more than 1 billion oxygen molecules.
Each iron ion in the heme can bind to one oxygen molecule; therefore, each hemoglobin molecule can transport four oxygen molecules. An individual erythrocyte may contain about 300 million hemoglobin molecules, and therefore can bind to and transport up to 1.2 billion oxygen molecules (see imageb).
In the lungs, hemoglobin picks up oxygen, which binds to the iron ions, forming oxyhemoglobin. The bright red, oxygenated hemoglobin travels to the body tissues, where it releases some of the oxygen molecules, becoming darker red deoxyhemoglobin, sometimes referred to as reduced hemoglobin. Oxygen release depends on the need for oxygen in the surrounding tissues, so hemoglobin rarely if ever leaves all of its oxygen behind. In the capillaries, carbon dioxide enters the bloodstream. About 76 percent dissolves in the plasma, some of it remaining as dissolved CO2, and the remainder forming bicarbonate ion. About 23–24 percent of it binds to the amino acids in hemoglobin, forming a molecule known as carbaminohemoglobin. From the capillaries, the hemoglobin carries carbon dioxide back to the lungs, where it releases it for exchange of oxygen.
Changes in the levels of RBCs can have significant effects on the body’s ability to effectively deliver oxygen to the tissues. Ineffective hematopoiesis results in insufficient numbers of RBCs and results in one of several forms of anemia. An overproduction of RBCs produces a condition called polycythemia. The primary drawback with polycythemia is not a failure to directly deliver enough oxygen to the tissues, but rather the increased viscosity of the blood, which makes it more difficult for the heart to circulate the blood.
In patients with insufficient hemoglobin, the tissues may not receive sufficient oxygen, resulting in another form of anemia. In determining oxygenation of tissues, the value of greatest interest in healthcare is the percent saturation; that is, the percentage of hemoglobin sites occupied by oxygen in a patient’s blood. Clinically this value is commonly referred to simply as “percent sat.”
Percent saturation is normally monitored using a device known as a pulse oximeter, which is applied to a thin part of the body, typically the tip of the patient’s finger. The device works by sending two different wavelengths of light (one red, the other infrared) through the finger and measuring the light with a photodetector as it exits. Hemoglobin absorbs light differentially depending upon its saturation with oxygen. The machine calibrates the amount of light received by the photodetector against the amount absorbed by the partially oxygenated hemoglobin and presents the data as percent saturation. Normal pulse oximeter readings range from 95–100 percent. Lower percentages reflect hypoxemia, or low blood oxygen. The term hypoxia is more generic and simply refers to low oxygen levels. Oxygen levels are also directly monitored from free oxygen in the plasma typically following an arterial stick. When this method is applied, the amount of oxygen present is expressed in terms of partial pressure of oxygen or simply pO2 and is typically recorded in units of millimeters of mercury, mm Hg.
The kidneys filter about 180 liters (~380 pints) of blood in an average adult each day, or about 20 percent of the total resting volume, and thus serve as ideal sites for receptors that determine oxygen saturation. In response to hypoxemia, less oxygen will exit the vessels supplying the kidney, resulting in hypoxia (low oxygen concentration) in the tissue fluid of the kidney where oxygen concentration is actually monitored. Interstitial fibroblasts within the kidney secrete EPO, thereby increasing erythrocyte production and restoring oxygen levels. In a classic negative-feedback loop, as oxygen saturation rises, EPO secretion falls, and vice versa, thereby maintaining homeostasis. Populations dwelling at high elevations, with inherently lower levels of oxygen in the atmosphere, naturally maintain a hematocrit higher than people living at sea level. Consequently, people traveling to high elevations may experience symptoms of hypoxemia, such as fatigue, headache, and shortness of breath, for a few days after their arrival. In response to the hypoxemia, the kidneys secrete EPO to step up the production of erythrocytes until homeostasis is achieved once again. To avoid the symptoms of hypoxemia, or altitude sickness, mountain climbers typically rest for several days to a week or more at a series of camps situated at increasing elevations to allow EPO levels and, consequently, erythrocyte counts to rise. When climbing the tallest peaks, such as Mt. Everest and K2 in the Himalayas, many mountain climbers rely upon bottled oxygen as they near the summit.
Source: CNX OpenStax
Additional Materials (6)
This browser does not support the video element.
Hemoglobin Within Red Blood Cell (RBC)
A red blood cell rushes toward the camera, the camera enters the cell to focus on all of the hemoglobin molecules within
Video by TheVisualMD
This browser does not support the video element.
Hemoglobin A1c
The hemoglobin A1c test measures the percentage of hemoglobin bound to blood sugar (glucose); the test is used to diagnose type 1 and type 2 diabetes. Because the test results reflect average blood sugar levels over a period of 2-3 months (rather than daily fluctuations), the hemoglobin A1C test is also used to gauge how well patients are managing their diabetes over time.
Video by TheVisualMD
This browser does not support the video element.
RBC Oxygenation
Animation showing blood cells flowing through a capillary with a red blood cell becoming oxygenated as it passes in front of the camera. The red blood cell becomes oxygenated by molecules of oxygen diffusing across the membrane of the blood cell where they bind with the hemoglobin within (not shown)
Video by TheVisualMD
This browser does not support the video element.
Basophilic Erythroblast
An animation of the second step in red blood cell maturation. Shown in this scene is a basophilic erythroblast (or basophilic normablast) . In this stage cell division ceases, the cell size decreases, and the oxygen binding molecule, hemoglobin begins synthesis . The cell moves from right to left while becoming less focussed. The cell is a violet color contrasting a pink environment mimicking the colors of a histology stained in hematoxylin and eosin (or H&E stain).
Video by TheVisualMD
This browser does not support the video element.
Complete Blood Count, and Baselining Your Health
Video Topics : Our lifeblood consists of many components and a complete blood count (CBC) includes measurements of the fundamental elements. The largest categories are red and white blood cells (RBCs and WBCs) and cell fragments called platelets, which play roles in blood clotting. There are 20-30 trillion red blood cells in the body of an adult, each with a lifespan of about 100 days (RBCs contain an iron-containing protein called hemoglobin that enables them to carry oxygen to tissues throughout the body and then return carbon dioxide to the lungs). WBCs are in the front lines in the body's ongoing fight against harmful viruses, bacteria and even fungus; when a pathogen enters the body, WBCs mobilize in a coordinated defense response to eliminate, neutralize or mark the invader for destruction. The liquid portion of blood is called plasma and it carries nutrients, electrolytes, waste products, and hormones.
Video by TheVisualMD
Hemoglobin A1C molecule
Hemoglobin is a protein found inside red blood cells that carries oxygen from the lungs to cells throughout the body. Hemoglobin also binds with glucose. Diabetics have too much glucose in the bloodstream and this extra glucose binds (or glycates) with hemoglobin. Glycated hemoglobin usually stays glycated for the life of the red blood cell (about 3 months). Therefore, the percentage of hemoglobin that is glycated (measured as A1C) reflects glucose levels that have affected red blood cells up to 3 months in the past.
Image by TheVisualMD
0:27
Hemoglobin Within Red Blood Cell (RBC)
TheVisualMD
0:27
Hemoglobin A1c
TheVisualMD
0:09
RBC Oxygenation
TheVisualMD
0:20
Basophilic Erythroblast
TheVisualMD
2:12
Complete Blood Count, and Baselining Your Health
TheVisualMD
Hemoglobin A1C molecule
TheVisualMD
Hemoglobin Blood Test
Hemoglobin Blood Test
Also called: Hemoglobin, Hgb
A hemoglobin test measures the levels of hemoglobin in your blood. Hemoglobin is an iron-rich protein in red blood cells that carries oxygen. Abnormal levels may mean you have anemia or another blood disorder.
Hemoglobin Blood Test
Also called: Hemoglobin, Hgb
A hemoglobin test measures the levels of hemoglobin in your blood. Hemoglobin is an iron-rich protein in red blood cells that carries oxygen. Abnormal levels may mean you have anemia or another blood disorder.
{"label":"Hemoglobin reference range","scale":"lin","step":0.1,"hideunits":false,"items":[{"flag":"abnormal","label":{"short":"Low","long":"Low","orientation":"horizontal"},"values":{"min":0,"max":13.8},"text":"Low levels of hemoglobin indicate that there is a shortage of red blood cells; this can be the result of RBCs being lost or destroyed too quickly or produced too slowly.","conditions":["Iron deficiency","Vitamin B12 deficiency","Folate deficiency","Sickle cell disease","Thalassemia","Cirrhosis","Bone marrow damage","Chronic disease","Acute or chronic bleeding"]},{"flag":"normal","label":{"short":"Normal","long":"Normal","orientation":"horizontal"},"values":{"min":13.8,"max":17.2},"text":"Heme, an iron-containing molecule, combines with globin proteins to form hemoglobin, which carries oxygen in red blood cells from the lungs to the rest of the body. ","conditions":[]},{"flag":"abnormal","label":{"short":"High","long":"High","orientation":"horizontal"},"values":{"min":17.2,"max":30},"text":"High levels of hemoglobin can be the result of dehydration, lung disease and other conditions.","conditions":["Polycythemia","Dehydration","Bone marrow diseases","Severe lung disease","Heart disease","Smoking","Living at high altitudes"]}],"units":[{"printSymbol":"g\/dL","code":"g\/dL","name":"gram per deciliter"}],"value":15.5,"disclaimer":"Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are \"within normal limits.\""}[{"abnormal":0},{"normal":0},{"abnormal":0}]
Use the slider below to see how your results affect your
health.
g/dL
13.8
17.2
Your result is Normal.
Heme, an iron-containing molecule, combines with globin proteins to form hemoglobin, which carries oxygen in red blood cells from the lungs to the rest of the body.
Related conditions
A hemoglobin test measures the levels of hemoglobin in your blood. Hemoglobin is a protein in your red blood cells that carries oxygen from your lungs to the rest of your body. If your hemoglobin levels are abnormal, it may be a sign that you have a blood disorder.
Other names: Hb, Hgb
A hemoglobin test is often used to check for anemia, a condition in which your body has fewer red blood cells than normal. If you have anemia, the cells in your body don't get all the oxygen they need. Hemoglobin tests are measured as part of a complete blood count (CBC).
Your health care provider may order the test as part of a routine exam, or if you have:
Symptoms of anemia, which include weakness, dizziness, and cold hands and feet
A family history of thalassemia, sickle cell anemia, or other inherited blood disorder
A diet low in iron and other minerals
A long-term infection
Excessive blood loss from an injury or surgical procedure
A health care professional will take a blood sample from a vein in your arm, using a small needle. After the needle is inserted, a small amount of blood will be collected into a test tube or vial. You may feel a little sting when the needle goes in or out. This usually takes less than five minutes.
You don't need any special preparation for a hemoglobin test. If your health care provider has ordered other tests on your blood sample, you may need to fast (not eat or drink) for several hours before the test. Your health care provider will let you know if there are any special instructions to follow.
There is very little risk to having a blood test. After the test, some people experience mild pain, dizziness, or bruising. These symptoms usually go away quickly.
There are many reasons your hemoglobin levels may not be in the normal range.
Low hemoglobin levels may be a sign of:
Different types of anemia
Thalassemia
Iron deficiency
Liver disease
Cancer and other diseases
High hemoglobin levels may be a sign of:
Lung disease
Heart disease
Polycythemia vera, a disorder in which your body makes too many red blood cells. It can cause headaches, fatigue, and shortness of breath.
If any of your levels are abnormal, it doesn't always mean you have a medical condition that needs treatment. Diet, activity level, medicines, a menstrual period, and other factors can affect the results. You may also have higher than normal hemoglobin levels if you live in a high altitude area. Talk with your provider to learn what your results mean.
Some forms of anemia are mild, while other types of anemia can be serious and even life threatening if not treated. If you are diagnosed with anemia, be sure to talk to your health care provider to find out the best treatment plan for you.
Hemoglobin Test: MedlinePlus Medical Test [accessed on Jan 20, 2024]
Hemoglobin: MedlinePlus Medical Encyclopedia [accessed on Jan 20, 2024]
Hemoglobin - Health Encyclopedia - University of Rochester Medical Center [accessed on Jan 20, 2024]
Normal reference ranges can vary depending on the laboratory and the method used for testing. You must use the range supplied by the laboratory that performed your test to evaluate whether your results are "within normal limits."
Additional Materials (16)
Hemoglobin | Human anatomy and physiology | Health & Medicine | Khan Academy
Video by Khan Academy/YouTube
Blood, Part 2 - There Will Be Blood: Crash Course A&P #30
Video by CrashCourse/YouTube
Haemoglobin
Video by Wellcome Trust/YouTube
Hemoglobin A1c & Diabetes
Video by DiabeTV/YouTube
Hemoglobin Molecule
Molecule of hemoglobin.
Image by TheVisualMD
Hemoglobin A1C Molecule
Hemoglobin is a protein found inside red blood cells that carries oxygen from the lungs to cells throughout the body. Hemoglobin also binds with glucose. Diabetics have too much glucose in the bloodstream and this extra glucose binds (or glycates) with hemoglobin. Glycated hemoglobin usually stays glycated for the life of the red blood cell (about 3 months). Therefore, the percentage of hemoglobin that is glycated (measured as A1C) reflects glucose levels that have affected red blood cells up to 3 months in the past. The hemoglobin A1C test measures the percentage of hemoglobin bound to blood sugar (glucose); the test is used to diagnose type 1 and type 2 diabetes. Because the test results reflect average blood sugar levels over a period of 2-3 months (rather than daily fluctuations), the hemoglobin A1C test is also used to gauge how well patients are managing their diabetes over time.
Image by TheVisualMD
Hemoglobin A1C: Red Blood Cells
Red blood cells use the iron-rich protein hemoglobin to carry oxygen from the lungs to cells throughout the body and return carbon dioxide to the lungs. The percentage of hemoglobin bound to blood glucose (hemoglobin A1C) is used to diagnose diabetes.
Image by TheVisualMD
Hemoglobin of Red Blood Cell
Hemoglobin is an iron-containing protein found in red blood cells that binds oxygen and carbon dioxide for transport and delivery to different parts of the body.
Image by TheVisualMD
Hemoglobin Molecule
Hemoglobin is an iron-rich protein that is packed inside RBCs. It is a structurally complex molecule that can change shape to either hold or release oxygen, depending on the body's need. There are close to 300 million hemoglobin molecules within each RBC.
Image by TheVisualMD
Hemoglobin Molecule Heme Group
A heme group in a hemoglobin molecule consists of an iron atom bound equally to four nitrogen atoms, all lying in one plane. The iron atom is the site of oxygen binding.
Image by TheVisualMD
This browser does not support the video element.
Hemoglobin Within Red Blood Cell (RBC)
A red blood cell rushes toward the camera, the camera enters the cell to focus on all of the hemoglobin molecules within
Video by TheVisualMD
Hemoglobin, Carbon Monoxide
Hemoglobin is an iron-containing protein that enables red blood cells to deliver oxygen from the lungs to cells throughout the body. But the same binding site on the hemoglobin molecule has an even stronger affinity for carbon monoxide, which is why we are so susceptible to poisoning by this deadly gas; carbon monoxide grabs all the binding sites and starves the body's tissues of oxygen
Image by TheVisualMD
This browser does not support the video element.
Hemoglobin A1c
The hemoglobin A1c test measures the percentage of hemoglobin bound to blood sugar (glucose); the test is used to diagnose type 1 and type 2 diabetes. Because the test results reflect average blood sugar levels over a period of 2-3 months (rather than daily fluctuations), the hemoglobin A1C test is also used to gauge how well patients are managing their diabetes over time.
Video by TheVisualMD
Hemoglobin A1c
The hemoglobin A1c test measures the percentage of hemoglobin bound to blood sugar (glucose); the test is used to diagnose type 1 and type 2 diabetes. Because the test results reflect average blood sugar levels over a period of 2-3 months (rather than daily fluctuations), the hemoglobin A1C test is also used to gauge how well patients are managing their diabetes over time.
Image by TheVisualMD
Hemoglobin: O2 Binding Hemoglobin
Hemoglobin normally binds to life-sustaining oxygen. But the same binding site on the hemoglobin molecule has an even stronger affinity for carbon monoxide, which is why we are so susceptible to poisoning by this deadly gas.
Image by TheVisualMD
HemoglobinA1C
Hemoglobin Test for O2 Binding Hemoglobin : A hemoglobin test is a measurement of your blood's oxygen-carrying capacity. High levels of hemoglobin can be the result of dehydration, lung disease and other conditions. Low levels of hemoglobin indicate that there is a shortage of red blood cells; this can be the result of RBCs being lost or destroyed too quickly or produced too slowly. Hemoglobin is an iron-containing protein that enables red blood cells to deliver oxygen from the lungs to cells throughout the body. But the same binding site on the hemoglobin molecule has an even stronger affinity for carbon monoxide, which is why we are so susceptible to poisoning by this deadly gas; carbon monoxide grabs all the binding sites and starves the body's tissues of oxygen.
Image by TheVisualMD
14:34
Hemoglobin | Human anatomy and physiology | Health & Medicine | Khan Academy
Khan Academy/YouTube
10:01
Blood, Part 2 - There Will Be Blood: Crash Course A&P #30
CrashCourse/YouTube
5:31
Haemoglobin
Wellcome Trust/YouTube
1:43
Hemoglobin A1c & Diabetes
DiabeTV/YouTube
Hemoglobin Molecule
TheVisualMD
Hemoglobin A1C Molecule
TheVisualMD
Hemoglobin A1C: Red Blood Cells
TheVisualMD
Hemoglobin of Red Blood Cell
TheVisualMD
Hemoglobin Molecule
TheVisualMD
Hemoglobin Molecule Heme Group
TheVisualMD
0:27
Hemoglobin Within Red Blood Cell (RBC)
TheVisualMD
Hemoglobin, Carbon Monoxide
TheVisualMD
0:27
Hemoglobin A1c
TheVisualMD
Hemoglobin A1c
TheVisualMD
Hemoglobin: O2 Binding Hemoglobin
TheVisualMD
HemoglobinA1C
TheVisualMD
Lifecycle
Your blood vessels are the body's superhighway
Image by TheVisualMD
Your blood vessels are the body's superhighway
Your blood vessels are the body's superhighway. Blood races through more than 50,000 miles of vessels, delivering nutrients to cells and hauling waste products away from them. One of the blood's most vital passengers is oxygen. Oxygen binds to hemoglobin, a protein in red blood cells, and is carried to cells throughout the body. Anemia occurs when hemoglobin does not carry enough oxygen to cells. There are several possible causes. Sometimes the body has too little iron, which is essential to the formation of hemoglobin. Deficiencies of vitamin B-12 or folic acid can also cause anemia. Sometimes there are not enough red blood cells, which can result from ulcers or other undetected sources of blood loss. And sometimes the body simply demands more iron for growth: Pregnant women and growing toddlers are at increased risk of anemia. People who are anemic can have headaches, dizziness, difficulty breathing, fatigue and they may feel cold. Anyone who has such symptoms can find out, through a simple blood test, whether some form of anemia is to blame. To keep that superhighway moving, we have to make sure that the blood is doing its job.
Image by TheVisualMD
Lifecycle of Erythrocytes
Production of erythrocytes in the marrow occurs at the staggering rate of more than 2 million cells per second. For this production to occur, a number of raw materials must be present in adequate amounts. These include the same nutrients that are essential to the production and maintenance of any cell, such as glucose, lipids, and amino acids. However, erythrocyte production also requires several trace elements:
Iron. We have said that each heme group in a hemoglobin molecule contains an ion of the trace mineral iron. On average, less than 20 percent of the iron we consume is absorbed. Heme iron, from animal foods such as meat, poultry, and fish, is absorbed more efficiently than non-heme iron from plant foods. Upon absorption, iron becomes part of the body’s total iron pool. The bone marrow, liver, and spleen can store iron in the protein compounds ferritin and hemosiderin. Ferroportin transports the iron across the intestinal cell plasma membranes and from its storage sites into tissue fluid where it enters the blood. When EPO stimulates the production of erythrocytes, iron is released from storage, bound to transferrin, and carried to the red marrow where it attaches to erythrocyte precursors.
Copper. A trace mineral, copper is a component of two plasma proteins, hephaestin and ceruloplasmin. Without these, hemoglobin could not be adequately produced. Located in intestinal villi, hephaestin enables iron to be absorbed by intestinal cells. Ceruloplasmin transports copper. Both enable the oxidation of iron from Fe2+ to Fe3+, a form in which it can be bound to its transport protein, transferrin, for transport to body cells. In a state of copper deficiency, the transport of iron for heme synthesis decreases, and iron can accumulate in tissues, where it can eventually lead to organ damage.
Zinc. The trace mineral zinc functions as a co-enzyme that facilitates the synthesis of the heme portion of hemoglobin.
B vitamins. The B vitamins folate and vitamin B12 function as co-enzymes that facilitate DNA synthesis. Thus, both are critical for the synthesis of new cells, including erythrocytes.
Erythrocytes live up to 120 days in the circulation, after which the worn-out cells are removed by a type of myeloid phagocytic cell called a macrophage, located primarily within the bone marrow, liver, and spleen. The components of the degraded erythrocytes’ hemoglobin are further processed as follows:
Globin, the protein portion of hemoglobin, is broken down into amino acids, which can be sent back to the bone marrow to be used in the production of new erythrocytes. Hemoglobin that is not phagocytized is broken down in the circulation, releasing alpha and beta chains that are removed from circulation by the kidneys.
The iron contained in the heme portion of hemoglobin may be stored in the liver or spleen, primarily in the form of ferritin or hemosiderin, or carried through the bloodstream by transferrin to the red bone marrow for recycling into new erythrocytes.
The non-iron portion of heme is degraded into the waste product biliverdin, a green pigment, and then into another waste product, bilirubin, a yellow pigment. Bilirubin binds to albumin and travels in the blood to the liver, which uses it in the manufacture of bile, a compound released into the intestines to help emulsify dietary fats. In the large intestine, bacteria breaks the bilirubin apart from the bile and converts it to urobilinogen and then into stercobilin. It is then eliminated from the body in the feces. Broad-spectrum antibiotics typically eliminate these bacteria as well and may alter the color of feces. The kidneys also remove any circulating bilirubin and other related metabolic byproducts such as urobilins and secrete them into the urine.
The breakdown pigments formed from the destruction of hemoglobin can be seen in a variety of situations. At the site of an injury, biliverdin from damaged RBCs produces some of the dramatic colors associated with bruising. With a failing liver, bilirubin cannot be removed effectively from circulation and causes the body to assume a yellowish tinge associated with jaundice. Stercobilins within the feces produce the typical brown color associated with this waste. And the yellow of urine is associated with the urobilins.
The erythrocyte lifecycle is summarized in the image.
Erythrocyte Lifecycle
Erythrocyte Lifecycle Erythrocytes are produced in the bone marrow and sent into the circulation. At the end of their lifecycle, they are destroyed by macrophages, and their components are recycled.
Source: CNX OpenStax
Additional Materials (11)
The Erythrocyte Life Cycle
Video by Medic Tutorials - Medicine and Language/YouTube
What are Erythrocytes? (Red Blood Cells)
Video by healthery/YouTube
This browser does not support the video element.
Red Blood Cell Production
Red blood cell production or erythropoiesis is the process by which red blood cells are formed.
Video by TheVisualMD
This browser does not support the video element.
Red Blood Cell Production (Erythropoiesis)
A 3D animation of the unipotent stem cell in the process of producing red blood cells. In this scene a pink developing cell is detaching from the transparent cytoplasm of the unipotent stem cell. In the background and out of focus are two purple developing cells.
Video by TheVisualMD
This browser does not support the video element.
Red Blood Cell Development
This video explains red blood cell development, following a pluripotent stem cell to red blood cell.
Video by TheVisualMD
Hematopoiesis
The Hematopoietic System of the Bone Marrow
Image by OpenStax College
Kidney and Stem Cell Creating Red Blood Cell
Kidney and Stem Cell Creating Red Blood Cell : We are used to thinking of our kidneys mostly as hardworking filters that rid our bodies of wastes and excess water. But the kidneys are also constantly monitoring and adjusting levels of key substances in the blood, depending on what the body needs. Specialized cells in the kidney that are very sensitive to low oxygen levels, for example, produce a hormone called erythropoietin (EPO), which in turn promotes the production of red blood cells in the bone marrow. The boost in red blood cells increases the oxygen-carrying capacity of the blood.
Image by TheVisualMD
Apoptotic Red Blood Cell
This image shows an apoptotic (dying) red blood cell.
Image by TheVisualMD
This browser does not support the video element.
Red Blood Cell Flowing Through Blood Vessel
Animation of red blood cells flowoing quicly through a blood vessel. The camera is positioned in the lumen of the vessel and the rbc's are flowing away from the viewer. The rbc and and lumen are rendered with muted colors to give it a softer look.
Video by TheVisualMD
This browser does not support the video element.
Red Blood Cell Passing Through Blood Vessel
Micro Magnetic Resonance Imaging based, stylized visualization of red blood cells passing through a blood vessel. The camera is within the lumen as the red blood cells flow away. The scene has an overall texture and blur add to it giving it a soft feel.
Video by TheVisualMD
Erythrocyte Lifecycle
Erythrocytes are produced in the bone marrow and sent into the circulation. At the end of their lifecycle, they are destroyed by macrophages, and their components are recycled.
Image by CNX Openstax
9:29
The Erythrocyte Life Cycle
Medic Tutorials - Medicine and Language/YouTube
2:18
What are Erythrocytes? (Red Blood Cells)
healthery/YouTube
5:22
Red Blood Cell Production
TheVisualMD
0:11
Red Blood Cell Production (Erythropoiesis)
TheVisualMD
0:31
Red Blood Cell Development
TheVisualMD
Hematopoiesis
OpenStax College
Kidney and Stem Cell Creating Red Blood Cell
TheVisualMD
Apoptotic Red Blood Cell
TheVisualMD
0:12
Red Blood Cell Flowing Through Blood Vessel
TheVisualMD
0:20
Red Blood Cell Passing Through Blood Vessel
TheVisualMD
Erythrocyte Lifecycle
CNX Openstax
Disorders
Sickle Cell Disease: By the Numbers
Document by NIH MedlinePlus Magazine
Sickle Cell Disease: By the Numbers
Document by NIH MedlinePlus Magazine
Disorders of Erythrocytes
The size, shape, and number of erythrocytes, and the number of hemoglobin molecules can have a major impact on a person’s health. When the number of RBCs or hemoglobin is deficient, the general condition is called anemia. There are more than 400 types of anemia and more than 3.5 million Americans suffer from this condition. Anemia can be broken down into three major groups: those caused by blood loss, those caused by faulty or decreased RBC production, and those caused by excessive destruction of RBCs. Clinicians often use two groupings in diagnosis: The kinetic approach focuses on evaluating the production, destruction, and removal of RBCs, whereas the morphological approach examines the RBCs themselves, paying particular emphasis to their size. A common test is the mean corpuscle volume (MCV), which measures size. Normal-sized cells are referred to as normocytic, smaller-than-normal cells are referred to as microcytic, and larger-than-normal cells are referred to as macrocytic. Reticulocyte counts are also important and may reveal inadequate production of RBCs. The effects of the various anemias are widespread, because reduced numbers of RBCs or hemoglobin will result in lower levels of oxygen being delivered to body tissues. Since oxygen is required for tissue functioning, anemia produces fatigue, lethargy, and an increased risk for infection. An oxygen deficit in the brain impairs the ability to think clearly, and may prompt headaches and irritability. Lack of oxygen leaves the patient short of breath, even as the heart and lungs work harder in response to the deficit.
Blood loss anemias are fairly straightforward. In addition to bleeding from wounds or other lesions, these forms of anemia may be due to ulcers, hemorrhoids, inflammation of the stomach (gastritis), and some cancers of the gastrointestinal tract. The excessive use of aspirin or other nonsteroidal anti-inflammatory drugs such as ibuprofen can trigger ulceration and gastritis. Excessive menstruation and loss of blood during childbirth are also potential causes.
Anemias caused by faulty or decreased RBC production include sickle cell anemia, iron deficiency anemia, vitamin deficiency anemia, and diseases of the bone marrow and stem cells.
A characteristic change in the shape of erythrocytes is seen in sickle cell disease (also referred to as sickle cell anemia). A genetic disorder, it is caused by production of an abnormal type of hemoglobin, called hemoglobin S, which delivers less oxygen to tissues and causes erythrocytes to assume a sickle (or crescent) shape, especially at low oxygen concentrations (image). These abnormally shaped cells can then become lodged in narrow capillaries because they are unable to fold in on themselves to squeeze through, blocking blood flow to tissues and causing a variety of serious problems from painful joints to delayed growth and even blindness and cerebrovascular accidents (strokes). Sickle cell anemia is a genetic condition particularly found in individuals of African descent.
Sickle Cells
Sickle Cells Sickle cell anemia is caused by a mutation in one of the hemoglobin genes. Erythrocytes produce an abnormal type of hemoglobin, which causes the cell to take on a sickle or crescent shape. (credit: Janice Haney Carr)
Iron deficiency anemia is the most common type and results when the amount of available iron is insufficient to allow production of sufficient heme. This condition can occur in individuals with a deficiency of iron in the diet and is especially common in teens and children as well as in vegans and vegetarians. Additionally, iron deficiency anemia may be caused by either an inability to absorb and transport iron or slow, chronic bleeding.
Vitamin-deficient anemias generally involve insufficient vitamin B12 and folate.
Megaloblastic anemia involves a deficiency of vitamin B12 and/or folate, and often involves diets deficient in these essential nutrients. Lack of meat or a viable alternate source, and overcooking or eating insufficient amounts of vegetables may lead to a lack of folate.
Pernicious anemia is caused by poor absorption of vitamin B12 and is often seen in patients with Crohn’s disease (a severe intestinal disorder often treated by surgery), surgical removal of the intestines or stomach (common in some weight loss surgeries), intestinal parasites, and AIDS.
Pregnancies, some medications, excessive alcohol consumption, and some diseases such as celiac disease are also associated with vitamin deficiencies. It is essential to provide sufficient folic acid during the early stages of pregnancy to reduce the risk of neurological defects, including spina bifida, a failure of the neural tube to close.
Assorted disease processes can also interfere with the production and formation of RBCs and hemoglobin. If myeloid stem cells are defective or replaced by cancer cells, there will be insufficient quantities of RBCs produced.
Aplastic anemia is the condition in which there are deficient numbers of RBC stem cells. Aplastic anemia is often inherited, or it may be triggered by radiation, medication, chemotherapy, or infection.
Thalassemia is an inherited condition typically occurring in individuals from the Middle East, the Mediterranean, African, and Southeast Asia, in which maturation of the RBCs does not proceed normally. The most severe form is called Cooley’s anemia.
Lead exposure from industrial sources or even dust from paint chips of iron-containing paints or pottery that has not been properly glazed may also lead to destruction of the red marrow.
Various disease processes also can lead to anemias. These include chronic kidney diseases often associated with a decreased production of EPO, hypothyroidism, some forms of cancer, lupus, and rheumatoid arthritis.
In contrast to anemia, an elevated RBC count is called polycythemia and is detected in a patient’s elevated hematocrit. It can occur transiently in a person who is dehydrated; when water intake is inadequate or water losses are excessive, the plasma volume falls. As a result, the hematocrit rises. For reasons mentioned earlier, a mild form of polycythemia is chronic but normal in people living at high altitudes. Some elite athletes train at high elevations specifically to induce this phenomenon. Finally, a type of bone marrow disease called polycythemia vera (from the Greek vera = “true”) causes an excessive production of immature erythrocytes. Polycythemia vera can dangerously elevate the viscosity of blood, raising blood pressure and making it more difficult for the heart to pump blood throughout the body. It is a relatively rare disease that occurs more often in men than women, and is more likely to be present in elderly patients those over 60 years of age.
Source: CNX OpenStax
Additional Materials (12)
Fatigue and Sickle Cell Anemia
Fatigue and Sickle Cell Anemia
Image by TheVisualMD
Red Blood Cell Life Cycle and Disorders, Animation
Video by Alila Medical Media/YouTube
Anemia Pathophysiology 3: Anemia of Inflammation (Anemia of Chronic Disease)
Video by Health Ed Solutions/YouTube
Pernicious Anemia
Video by DDobbs Productions/YouTube
Iron Deficiency Anemia (IDA) VS Anemia of chronic disease (ACD)
Video by Medicosis Perfectionalis/YouTube
What is Sickle Cell Anemia? www.fudgefoundation.com
Video by fudgefoundation/YouTube
What is Anemia? (Lack of Blood)
Video by healthery/YouTube
Johns Hopkins Medicine | Aplastic Anemia
Video by Johns Hopkins Medicine/YouTube
Medical School - Iron Deficiency Anemia
Video by iMedicalSchool/YouTube
What Are the Signs and Symptoms of Sickle Cell Disease?
Anemia Sickle cell : Figure A shows normal red blood cells flowing freely in a blood vessel. The inset image shows a cross-section of a normal red blood cell with normal hemoglobin. Figure B shows abnormal, sickled red blood cells blocking blood flow in a blood vessel. The inset image shows a cross-section of a sickle cell with abnormal (sickle) hemoglobin forming abnormal strands.
Image by The National Heart, Lung, and Blood Institute (NHLBI)
3D medical animation still showing normal RBCs(L) and abnormal, sickled RBCs(R)
Normal RBCs(L) Vs. Abnormal, sickled RBCs(R)
Image by Scientific Animations, Inc.
Sickle Cell in Capillary
This image shows sickle cells traveling in a bifurcating capillary.
Image by TheVisualMD
Fatigue and Sickle Cell Anemia
TheVisualMD
4:25
Red Blood Cell Life Cycle and Disorders, Animation
Alila Medical Media/YouTube
11:23
Anemia Pathophysiology 3: Anemia of Inflammation (Anemia of Chronic Disease)
Health Ed Solutions/YouTube
1:35
Pernicious Anemia
DDobbs Productions/YouTube
4:37
Iron Deficiency Anemia (IDA) VS Anemia of chronic disease (ACD)
Medicosis Perfectionalis/YouTube
1:04
What is Sickle Cell Anemia? www.fudgefoundation.com
fudgefoundation/YouTube
2:48
What is Anemia? (Lack of Blood)
healthery/YouTube
2:42
Johns Hopkins Medicine | Aplastic Anemia
Johns Hopkins Medicine/YouTube
7:23
Medical School - Iron Deficiency Anemia
iMedicalSchool/YouTube
What Are the Signs and Symptoms of Sickle Cell Disease?
The National Heart, Lung, and Blood Institute (NHLBI)
3D medical animation still showing normal RBCs(L) and abnormal, sickled RBCs(R)
Send this HealthJournal to your friends or across your social medias.
Red Blood Cells
The erythrocyte, commonly known as a red blood cell (or RBC), is by far the most common formed element: a single drop of blood contains millions of erythrocytes and just thousands of leukocytes.