Researchers are learning more about Huntington's disease over time. Below are some important updates that may improve how doctors care for this disorder in the future.
Understanding Huntington's disease mechanisms
NINDS-funded researchers are trying to better understand the cellular and molecular mechanisms involved in HD by investigating, for instance, how the huntintin protein affects cell signaling and how its altered structure can contribute to disease. The following provides an overview of this research:
- A new avenue of NINDS-supported research is asking whether additional changes to the Huntington gene during development and in adulthood impact disease onset and severity, and whether the Huntington gene affects the brain's overall ability to maintain healthy, undamaged DNA. This work is a promising area for identifying new modifiers of HD onset and progression that may be attractive drug targets.
- Excessive chemical signaling between cells in the brain may lead to chronic overexcitation (overactivation of neurons to turn on), which is toxic to neurons. Several labs are investigating whether drugs that counteract excitotoxicity might help against HD.
- Cutting-edge methods such as optogenetics (where neurons are activated or silenced in the brains of living animals using light beams) are being used to probe the cause and progression of cell circuit defects in HD.
Biomarkers
The NINDS-funded PREDICT-HD study and several international studies are working to identify and validate biomarkers for HD. Biomarkers are biological indicators that can be used to predict, diagnose, or monitor a disease. One goal of PREDICT-HD is to determine if the progression of the disease correlates with changes in brain scan images, or with chemical changes in blood, urine, or cerebrospinal fluid. Another goal is to find measurable changes in personality, mood, and cognition that typically precede the appearance of motor symptoms of HD. A third phase of PredictHD is ongoing.
A related NINDS-supported study aims to identify additional human genetic factors that influence the course of the disease. Finding genetic variants that slow or accelerate the pace of disease progression promises to provide important new targets for disease intervention and therapy.
Stem cells
Through a NINDS-funded consortium, researchers are using cultures of cell lines (created from people with HD who have donated skin and blood samples for research) to understand why neurons malfunction and die in HD, and to rapidly test potential new drugs. Another approach may be to mobilize stem cells that are already there and can move into damaged tissue.
Turning research into treatment
Testing investigational drugs may lead to new treatments and at the same time improve our understanding of the disease process in HD. Classes of drugs being tested include those designed to control symptoms, slow the rate of progression of HD, block the effects of excitotoxins, provide support factors that improve neuronal health, or suppress metabolic defects that contribute to the development and progression of HD.
Several groups of scientists are using gene-editing or specific molecules that can interfere with the production of the Huntingtin protein in cells or animals to stop production of Htt in inappropriate locations or amounts.
Imaging
Scientists are using imaging technology to learn how HD affects the chemical systems of the brain, characterize neurons that have died, view changes in the volume and structures of the brain in people with HD, and to understand how HD affects the functioning of different brain regions.
Brain development
Altered brain development may play an important role in HD. Huntingtin is expressed during embryonic development and throughout life. Studies in animals have shown that the normal HD gene is vital for brain development. Adults who carry the mutant HD gene but have not yet displayed symptoms show measurable changes in the structure of their brain, even up to 20 years before clinical diagnosis.
A NINDS-funded study is evaluating brain structure and function in children, adolescents, and young adults up to age 30 who are at risk for developing the disease because they have a parent or grandparent with HD. This study is trying to capture potential HD effects during the late stages of brain development. Participants who carry the expanded gene will be compared to individuals who carry the gene but have fewer than 9 CAG repeats, as well as to individuals who do not have a history of HD in their family. Changes in brain structure and/or function in the gene-expanded group may point to a developmental component in HD.