Introduction
Diplopia refers to seeing two images and is due either to ocular misalignment in which case it disappears when either eye is occluded or to an optical problem in which case it is termed monocular diplopia and does not disappear with monocular viewing.
Patients with ocular misalignment can harbor serious pathology and should be evaluated in a systematic and thorough manner in order to uncover all potentially serious cases. This article will present an outline of the approach to diplopic patients.
Etiology
The etiology of diplopia is either eye misalignment if diplopia is binocular or an optical phenomenon if it is monocular. Eye misalignment can occur due to a variety of causes, and in order to understand it, one has to follow the anatomical algorithm of what needs to happen in order for the eyes to be aligned together. Both eyes have to receive equal innervation of all of their extraocular muscles in order to be in the so-called primary position when the innervation to antagonist extraocular muscles in each eye is equal. Innervation to extraocular muscles is provided by the 3rd, 4th, and 6th cranial nerves; thus, all three have to be working well on each side in order to maintain both eyes in the primary position and aligned with each other. The nuclei of all three of these cranial nerves originate in the brainstem (3rd and 4th in the midbrain and 6th in the pons). Their fascicles then traverse the brainstem exiting it ventrally in the case of the 3rd and 6th nerve and dorsally in the case of the 4th nerve. The nerves then travel variable distances in the subarachnoid space, where they are susceptible to a variety of pathologies affecting cerebrospinal fluid (inflammatory conditions, infections, and malignancies). Eventually, all oculomotor nerves (3rd, 4th, and 6th) emerge from the subarachnoid space and converge in the space filled with venous blood located laterally to each side of the pituitary gland, which is termed cavernous sinus. The cavernous sinus is surrounded by a lot of structures, and pathologies affecting these neighboring structures (sphenoid sinus, pituitary gland, nasopharynx, intracavernous carotid arteries, etc.) can affect any of the oculomotor nerves and thus cause diplopia. As all three oculomotor nerves are located in close proximity to each other in the cavernous sinus, when encountering a patient with more than one oculomotor nerve palsies, one should think of cavernous sinus as the most likely location of the causative lesion. From the cavernous sinuses, all three oculomotor nerves travel in close proximity to each other to enter the superior orbital fissure, where they are also located close to the 2nd cranial nerve (optic nerve); thus, lesions in the superior orbital fissure produce decrease vision and often forward displacement of the globe (proptosis) in addition to multiple oculomotor nerve palsies. From the superior orbital fissure, each nerve travels to the extraocular muscle it innervates through the orbit; thus, orbital pathology can produce diplopia as well. Eventually, the nerve will join the muscle that it innervates, and pathology at the neuromuscular junction can also cause ocular misalignment and thus binocular diplopia. Finally, extraocular muscles themselves need to be intact in order for the eyes to be aligned with each other; thus, myopathies can also produce diplopia.
Monocular diplopia is almost always an ophthalmological problem and stems most commonly from the cataractous changes in the crystalline lens, abnormalities in the corneal surface (keratoconus or uncorrected astigmatism), and exceedingly rarely lesions affecting occipital cortex can produce monocular diplopia as well (termed "cortical polyopia") in which case they are almost always accompanied by homonymous visual field defects. Finally, when no organic etiology for monocular diplopia can be found, and diplopia does not disappear when looking through a pinhole, one has to assume that it is functional in nature.
Epidemiology
Diplopia is a common complaint in both the ambulatory setting as well as in the emergency department, with one study reporting almost 805000 ambulatory and 50000 emergency department visits in the United States yearly with the chief complaint of diplopia[1]. Diplopia, particularly when acute in onset, is very unsettling to the patient and will prompt most to visit an emergency department. While we are always concerned about the potential sinister and even life-threatening causes of diplopia, only 16% of patients with diplopia were found to have potentially life-threatening etiologies in one study.
Pathophysiology
Binocular diplopia occurs because the image falls outside of the fovea in one eye, thus triggering the perception of two separate images. If eye misalignment is horizontal, diplopia is horizontal, and if the eye misalignment is vertical, it will be vertical.
History and Physical
When evaluating a diplopic patient, one has first to determine whether diplopia is monocular or binocular. While this has already been mentioned above, it is of paramount importance as skipping this step will lead to unnecessary investigations and anxiety for the patient.
The next most important step is to search for accompanying “brainstem” symptoms. While isolated brainstem strokes are uncommon, diplopia can be the main complaint in patients with strokes involving diencephalon or brainstem, which involve either the nuclei or fascicles of the IIIrd, IVth, or VIth cranial nerves, medial longitudinal fasciculus, or vertibulo-ocular pathways producing the so-called skew deviation.
Any patient with an acute onset of binocular diplopia who has any accompanying symptoms that can be caused by brainstem dysfunction (vertigo, dizziness, dysarthria, crossed motor or sensory symptoms, ataxia, imbalance, etc.) should be immediately referred to an emergency department for in order have an urgent MRI of the brain with attention to the brainstem performed. MRI should include diffusion-weighted as well as susceptibility-weighted images in order to detect subtle ischemic and/or hemorrhagic lesions.
All diplopic patients should be asked about the fatiguability and variability of their symptoms as well as the presence of symptoms of increased intracranial pressure, and all patients over the age of 50 should be asked about the symptoms of giant cell arteritis.
Next, a careful examination should be performed, first testing ocular motility in order to try to identify obvious deficits and determine whether they map out to the dysfunction of the 3rd or 6th cranial nerves. Motility testing should be performed by slowly moving a target in all directions of gaze and should be checked in each eye separately. After motility testing, ocular alignment should be checked by performing alternate cover testing. If a vertical deviation is uncovered, testing of misalignment in ipsi- and contralateral gaze as well as ipsi- and contralateral head tilt positions should be performed to determine if the deviation fits the pattern of the so-called 3-step test where the hypertropia increases in contralateral gaze and ipsilateral head tilt. A positive 3-step test indicates 4th nerve paresis.
If ocular motility is full and eye misalignment remains the same in all positions of gaze, it is termed comitant and is almost always secondary to decompensated congenital strabismus. It does not require further investigations or testing other than a referral for ophthalmological evaluation. After ocular motility and alignment have been examined and recorded (we prefer recording ocular motility in percentages, i.e., "there was only 70% of expected supraduction"), pupillary examination, the position of the lids, and movement of the lid during the motility testing, presence of proptosis, and orbicularis strength should all be examined and recorded. Dilated fundus examination looking for the presence of optic nerve head edema and any signs of venous stasis retinopathy should be performed in all diplopic patients as well.