Burnout
- A general feeling of exhaustion that can develop when a person simultaneously experiences too much pressure to perform and too few sources of satisfaction.
Source: CNX OpenStax
You can contact us here
Burnout
Burnout Syndrome; Occupational Burnout; Occupational Stress; Work-Related Stress
Burnout is a long-term stress reaction marked by emotional exhaustion and a lack of sense of personal accomplishment. Burnout happens when you're overwhelmed, emotionally drained, and unable to keep up with life's incessant demands. In many cases, burnout is related to one's job. Learn more about burnout, including how to recognize it and prevent it.
Woman with depression
Image by Sydney Sims/Unsplash
Burnout (psychology)
Image by TheVisualMD
Source: CNX OpenStax
Occupational Stress
Image by Sebastian Herrmann/Unsplash
Occupational stress has been a long-standing concern of the health care industry. Studies indicate that health care workers have higher rates of substance abuse and suicide than other professions and elevated rates of depression and anxiety linked to job stress. In addition to psychological distress, other outcomes of job stress include burnout, absenteeism, employee intent to leave, reduced patient satisfaction, and diagnosis and treatment errors.
The National Institute for Occupational Safety and Health (NIOSH) defines occupational stress as “the harmful physical and emotional responses that occur when the requirements of the job do not match the capabilities, resources, or needs of the worker.” The following workplace factors (job stressors) can result in stress:
Stressors common in health care settings include the following:
Stressors vary among health care occupations and even within occupations, depending on the task being performed.
In general, studies of nurses have found the following factors to be linked with stress:
Among physicians, the following factors are associated with stress:
The quality of patient care provided by a hospital may also affect health care worker stress. Beliefs about whether the institution provides high quality care may influence the perceived stress of job pressures and workload because higher quality care maybe reflected in greater support and availability of resources.
Source: National Institute for Occupational Safety and Health
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
This browser does not support the video element.
Burnout (psychology)
Image by TheVisualMD
The stress response consists of a coordinated but complex system of physiological reactions that are called upon as needed. These reactions are beneficial at times because they prepare us to deal with potentially dangerous or threatening situations (for example, recall our old friend, the fearsome bear on the trail). However, health is affected when physiological reactions are sustained, as can happen in response to ongoing stress.
If the reactions that compose the stress response are chronic or if they frequently exceed normal ranges, they can lead to cumulative wear and tear on the body, in much the same way that running your air conditioner on full blast all summer will eventually cause wear and tear on it. For example, the high blood pressure that a person under considerable job strain experiences might eventually take a toll on his heart and set the stage for a heart attack or heart failure. Also, someone exposed to high levels of the stress hormone cortisol might become vulnerable to infection or disease because of weakened immune system functioning (McEwen, 1998).
Physical disorders or diseases whose symptoms are brought about or worsened by stress and emotional factors are called psychophysiological disorders. The physical symptoms of psychophysiological disorders are real and they can be produced or exacerbated by psychological factors (hence the psycho and physiological in psychophysiological). A list of frequently encountered psychophysiological disorders is provided in Table.
Type of Psychophysiological Disorder | Examples |
---|---|
Cardiovascular | hypertension, coronary heart disease |
Gastrointestinal | irritable bowel syndrome |
Respiratory | asthma, allergy |
Musculoskeletal | low back pain, tension headaches |
Skin | acne, eczema, psoriasis |
In addition to stress itself, emotional upset and certain stressful personality traits have been proposed as potential contributors to ill health. Franz Alexander (1950), an early-20th-century psychoanalyst and physician, once postulated that various diseases are caused by specific unconscious conflicts. For example, he linked hypertension to repressed anger, asthma to separation anxiety, and ulcers to an unconscious desire to “remain in the dependent infantile situation—to be loved and cared for” (Alexander, 1950, p. 102). Although hypertension does appear to be linked to anger (as you will learn below), Alexander’s assertions have not been supported by research. Years later, Friedman and Booth-Kewley (1987), after statistically reviewing 101 studies examining the link between personality and illness, proposed the existence of disease-prone personality characteristics, including depression, anger/hostility, and anxiety. Indeed, a study of over 61,000 Norwegians identified depression as a risk factor for all major disease-related causes of death (Mykletun et al., 2007). In addition, neuroticism—a personality trait that reflects how anxious, moody, and sad one is—has been identified as a risk factor for chronic health problems and mortality (Ploubidis & Grundy, 2009).
Below, we discuss two kinds of psychophysiological disorders about which a great deal is known: cardiovascular disorders and asthma. First, however, it is necessary to turn our attention to a discussion of the immune system—one of the major pathways through which stress and emotional factors can lead to illness and disease.
In a sense, the immune system is the body’s surveillance system. It consists of a variety of structures, cells, and mechanisms that serve to protect the body from invading toxins and microorganisms that can harm or damage the body’s tissues and organs. When the immune system is working as it should, it keeps us healthy and disease free by eliminating bacteria, viruses, and other foreign substances that have entered the body (Everly & Lating, 2002).
Sometimes, the immune system will function erroneously. For example, sometimes it can go awry by mistaking your body’s own healthy cells for invaders and repeatedly attacking them. When this happens, the person is said to have an autoimmune disease, which can affect almost any part of the body. How an autoimmune disease affects a person depends on what part of the body is targeted. For instance, rheumatoid arthritis, an autoimmune disease that affects the joints, results in joint pain, stiffness, and loss of function. Systemic lupus erythematosus, an autoimmune disease that affects the skin, can result in rashes and swelling of the skin. Grave’s disease, an autoimmune disease that affects the thyroid gland, can result in fatigue, weight gain, and muscle aches (National Institute of Arthritis and Musculoskeletal and Skin Diseases [NIAMS], 2012).
In addition, the immune system may sometimes break down and be unable to do its job. This situation is referred to as immunosuppression, the decreased effectiveness of the immune system. When people experience immunosuppression, they become susceptible to any number of infections, illness, and diseases. For example, acquired immune deficiency syndrome (AIDS) is a serious and lethal disease that is caused by human immunodeficiency virus (HIV), which greatly weakens the immune system by infecting and destroying antibody-producing cells, thus rendering a person vulnerable to any of a number of opportunistic infections (Powell, 1996).
The question of whether stress and negative emotional states can influence immune function has captivated researchers for over three decades, and discoveries made over that time have dramatically changed the face of health psychology (Kiecolt-Glaser, 2009). Psychoneuroimmunology is the field that studies how psychological factors such as stress influence the immune system and immune functioning. The term psychoneuroimmunology was first coined in 1981, when it appeared as the title of a book that reviewed available evidence for associations between the brain, endocrine system, and immune system (Zacharie, 2009). To a large extent, this field evolved from the discovery that there is a connection between the central nervous system and the immune system.
Some of the most compelling evidence for a connection between the brain and the immune system comes from studies in which researchers demonstrated that immune responses in animals could be classically conditioned (Everly & Lating, 2002). For example, Ader and Cohen (1975) paired flavored water (the conditioned stimulus) with the presentation of an immunosuppressive drug (the unconditioned stimulus), causing sickness (an unconditioned response). Not surprisingly, rats exposed to this pairing developed a conditioned aversion to the flavored water. However, the taste of the water itself later produced immunosuppression (a conditioned response), indicating that the immune system itself had been conditioned. Many subsequent studies over the years have further demonstrated that immune responses can be classically conditioned in both animals and humans (Ader & Cohen, 2001). Thus, if classical conditioning can alter immunity, other psychological factors should be capable of altering it as well.
Hundreds of studies involving tens of thousands of participants have tested many kinds of brief and chronic stressors and their effect on the immune system (e.g., public speaking, medical school examinations, unemployment, marital discord, divorce, death of spouse, burnout and job strain, caring for a relative with Alzheimer’s disease, and exposure to the harsh climate of Antarctica). It has been repeatedly demonstrated that many kinds of stressors are associated with poor or weakened immune functioning (Glaser & Kiecolt-Glaser, 2005; Kiecolt-Glaser, McGuire, Robles, & Glaser, 2002; Segerstrom & Miller, 2004).
When evaluating these findings, it is important to remember that there is a tangible physiological connection between the brain and the immune system. For example, the sympathetic nervous system innervates immune organs such as the thymus, bone marrow, spleen, and even lymph nodes (Maier, Watkins, & Fleshner, 1994). Also, we noted earlier that stress hormones released during hypothalamic-pituitary-adrenal (HPA) axis activation can adversely impact immune function. One way they do this is by inhibiting the production of lymphocytes, white blood cells that circulate in the body’s fluids that are important in the immune response (Everly & Lating, 2002).
Some of the more dramatic examples demonstrating the link between stress and impaired immune function involve studies in which volunteers were exposed to viruses. The rationale behind this research is that because stress weakens the immune system, people with high stress levels should be more likely to develop an illness compared to those under little stress. In one memorable experiment using this method, researchers interviewed 276 healthy volunteers about recent stressful experiences (Cohen et al., 1998). Following the interview, these participants were given nasal drops containing the cold virus (in case you are wondering why anybody would ever want to participate in a study in which they are subjected to such treatment, the participants were paid $800 for their trouble). When examined later, participants who reported experiencing chronic stressors for more than one month—especially enduring difficulties involving work or relationships—were considerably more likely to have developed colds than were participants who reported no chronic stressors (Figure).
Other studies have demonstrated that stress slows down wound healing by impairing immune responses important to wound repair (Glaser & Kiecolt-Glaser, 2005). In one study, for example, skin blisters were induced on the forearm. Subjects who reported higher levels of stress produced lower levels of immune proteins necessary for wound healing (Glaser et al., 1999). Stress, then, is not so much the sword that kills the knight, so to speak; rather, it’s the sword that breaks the knight’s shield, and your immune system is that shield.
The cardiovascular system is composed of the heart and blood circulation system. For many years, disorders that involve the cardiovascular system—known as cardiovascular disorders—have been a major focal point in the study of psychophysiological disorders because of the cardiovascular system’s centrality in the stress response (Everly & Lating, 2002). Heart disease is one such condition. Each year, heart disease causes approximately one in three deaths in the United States, and it is the leading cause of death in the developed world (Centers for Disease Control and Prevention [CDC], 2011; Shapiro, 2005).
The symptoms of heart disease vary somewhat depending on the specific kind of heart disease one has, but they generally involve angina—chest pains or discomfort that occur when the heart does not receive enough blood (Office on Women’s Health, 2009). The pain often feels like the chest is being pressed or squeezed; burning sensations in the chest and shortness of breath are also commonly reported. Such pain and discomfort can spread to the arms, neck, jaws, stomach (as nausea), and back (American Heart Association [AHA], 2012a) (Figure).
A major risk factor for heart disease is hypertension, which is high blood pressure. Hypertension forces a person’s heart to pump harder, thus putting more physical strain on the heart. If left unchecked, hypertension can lead to a heart attack, stroke, or heart failure; it can also lead to kidney failure and blindness. Hypertension is a serious cardiovascular disorder, and it is sometimes called the silent killer because it has no symptoms—one who has high blood pressure may not even be aware of it (AHA, 2012b).
Many risk factors contributing to cardiovascular disorders have been identified. These risk factors include social determinants such as aging, income, education, and employment status, as well as behavioral risk factors that include unhealthy diet, tobacco use, physical inactivity, and excessive alcohol consumption; obesity and diabetes are additional risk factors (World Health Organization [WHO], 2013).
Over the past few decades, there has been much greater recognition and awareness of the importance of stress and other psychological factors in cardiovascular health (Nusair, Al-dadah, & Kumar, 2012). Indeed, exposure to stressors of many kinds has also been linked to cardiovascular problems; in the case of hypertension, some of these stressors include job strain (Trudel, Brisson, & Milot, 2010), natural disasters (Saito, Kim, Maekawa, Ikeda, & Yokoyama, 1997), marital conflict (Nealey-Moore, Smith, Uchino, Hawkins, & Olson-Cerny, 2007), and exposure to high traffic noise levels at one’s home (de Kluizenaar, Gansevoort, Miedema, & de Jong, 2007). Perceived discrimination appears to be associated with hypertension among African Americans (Sims et al., 2012). In addition, laboratory-based stress tasks, such as performing mental arithmetic under time pressure, immersing one’s hand into ice water (known as the cold pressor test), mirror tracing, and public speaking have all been shown to elevate blood pressure (Phillips, 2011).
Sometimes research ideas and theories emerge from seemingly trivial observations. In the 1950s, cardiologist Meyer Friedman was looking over his waiting room furniture, which consisted of upholstered chairs with armrests. Friedman decided to have these chairs reupholstered. When the man doing the reupholstering came to the office to do the work, he commented on how the chairs were worn in a unique manner—the front edges of the cushions were worn down, as were the front tips of the arm rests. It seemed like the cardiology patients were tapping or squeezing the front of the armrests, as well as literally sitting on the edge of their seats (Friedman & Rosenman, 1974). Were cardiology patients somehow different than other types of patients? If so, how?
After researching this matter, Friedman and his colleague, Ray Rosenman, came to understand that people who are prone to heart disease tend to think, feel, and act differently than those who are not. These individuals tend to be intensively driven workaholics who are preoccupied with deadlines and always seem to be in a rush. According to Friedman and Rosenman, these individuals exhibit Type A behavior pattern; those who are more relaxed and laid-back were characterized as Type B (Figure). In a sample of Type As and Type Bs, Friedman and Rosenman were startled to discover that heart disease was over seven times more frequent among the Type As than the Type Bs (Friedman & Rosenman, 1959).
The major components of the Type A pattern include an aggressive and chronic struggle to achieve more and more in less and less time (Friedman & Rosenman, 1974). Specific characteristics of the Type A pattern include an excessive competitive drive, chronic sense of time urgency, impatience, and hostility toward others (particularly those who get in the person’s way).
An example of a person who exhibits Type A behavior pattern is Jeffrey. Even as a child, Jeffrey was intense and driven. He excelled at school, was captain of the swim team, and graduated with honors from an Ivy League college. Jeffrey never seems able to relax; he is always working on something, even on the weekends. However, Jeffrey always seems to feel as though there are not enough hours in the day to accomplish all he feels he should. He volunteers to take on extra tasks at work and often brings his work home with him; he often goes to bed angry late at night because he feels that he has not done enough. Jeffrey is quick tempered with his coworkers; he often becomes noticeably agitated when dealing with those coworkers he feels work too slowly or whose work does not meet his standards. He typically reacts with hostility when interrupted at work. He has experienced problems in his marriage over his lack of time spent with family. When caught in traffic during his commute to and from work, Jeffrey incessantly pounds on his horn and swears loudly at other drivers. When Jeffrey was 52, he suffered his first heart attack.
By the 1970s, a majority of practicing cardiologists believed that Type A behavior pattern was a significant risk factor for heart disease (Friedman, 1977). Indeed, a number of early longitudinal investigations demonstrated a link between Type A behavior pattern and later development of heart disease (Rosenman et al., 1975; Haynes, Feinleib, & Kannel, 1980).
Subsequent research examining the association between Type A and heart disease, however, failed to replicate these earlier findings (Glassman, 2007; Myrtek, 2001). Because Type A theory did not pan out as well as they had hoped, researchers shifted their attention toward determining if any of the specific elements of Type A predict heart disease.
Extensive research clearly suggests that the anger/hostility dimension of Type A behavior pattern may be one of the most important factors in the development of heart disease. This relationship was initially described in the Haynes et al. (1980) study mentioned above: Suppressed hostility was found to substantially elevate the risk of heart disease for both men and women. Also, one investigation followed over 1,000 male medical students from 32 to 48 years. At the beginning of the study, these men completed a questionnaire assessing how they react to pressure; some indicated that they respond with high levels of anger, whereas others indicated that they respond with less anger. Decades later, researchers found that those who earlier had indicated the highest levels of anger were over 6 times more likely than those who indicated less anger to have had a heart attack by age 55, and they were 3.5 times more likely to have experienced heart disease by the same age (Chang, Ford, Meoni, Wang, & Klag, 2002). From a health standpoint, it clearly does not pay to be an angry young person.
After reviewing and statistically summarizing 35 studies from 1983 to 2006, Chida and Steptoe (2009) concluded that the bulk of the evidence suggests that anger and hostility constitute serious long-term risk factors for adverse cardiovascular outcomes among both healthy individuals and those already suffering from heart disease. One reason angry and hostile moods might contribute to cardiovascular diseases is that such moods can create social strain, mainly in the form of antagonistic social encounters with others. This strain could then lay the foundation for disease-promoting cardiovascular responses among hostile individuals (Vella, Kamarck, Flory, & Manuck, 2012). In this transactional model, hostility and social strain form a cycle (Figure).
For example, suppose Kaitlin has a hostile disposition; she has a cynical, distrustful attitude toward others and often thinks that other people are out to get her. She is very defensive around people, even those she has known for years, and she is always looking for signs that others are either disrespecting or belittling her. In the shower each morning before work, she often mentally rehearses what she would say to someone who said or did something that angered her, such as making a political statement that was counter to her own ideology. As Kaitlin goes through these mental rehearsals, she often grins and thinks about the retaliation on anyone who will irk her that day.
Socially, she is confrontational and tends to use a harsh tone with people, which often leads to very disagreeable and sometimes argumentative social interactions. As you might imagine, Kaitlin is not especially popular with others, including coworkers, neighbors, and even members of her own family. They either avoid her at all costs or snap back at her, which causes Kaitlin to become even more cynical and distrustful of others, making her disposition even more hostile. Kaitlin’s hostility—through her own doing—has created an antagonistic environment that cyclically causes her to become even more hostile and angry, thereby potentially setting the stage for cardiovascular problems.
In addition to anger and hostility, a number of other negative emotional states have been linked with heart disease, including negative affectivity and depression (Suls & Bunde, 2005). Negative affectivity is a tendency to experience distressed emotional states involving anger, contempt, disgust, guilt, fear, and nervousness (Watson, Clark, & Tellegen, 1988). It has been linked with the development of both hypertension and heart disease. For example, over 3,000 initially healthy participants in one study were tracked longitudinally, up to 22 years. Those with higher levels of negative affectivity at the time the study began were substantially more likely to develop and be treated for hypertension during the ensuing years than were those with lower levels of negative affectivity (Jonas & Lando, 2000). In addition, a study of over 10,000 middle-aged London-based civil servants who were followed an average of 12.5 years revealed that those who earlier had scored in the upper third on a test of negative affectivity were 32% more likely to have experienced heart disease, heart attack, or angina over a period of years than were those who scored in the lowest third (Nabi, Kivimaki, De Vogli, Marmot, & Singh-Manoux, 2008). Hence, negative affectivity appears to be a potentially vital risk factor for the development of cardiovascular disorders.
For centuries, poets and folklore have asserted that there is a connection between moods and the heart (Glassman & Shapiro, 1998). You are no doubt familiar with the notion of a broken heart following a disappointing or depressing event and have encountered that notion in songs, films, and literature.
Perhaps the first to recognize the link between depression and heart disease was Benjamin Malzberg (1937), who found that the death rate among institutionalized patients with melancholia (an archaic term for depression) was six times higher than that of the population. A classic study in the late 1970s looked at over 8,000 manic-depressive persons in Denmark, finding a nearly 50% increase in deaths from heart disease among these patients compared with the general Danish population (Weeke, 1979). By the early 1990s, evidence began to accumulate showing that depressed individuals who were followed for long periods of time were at increased risk for heart disease and cardiac death (Glassman, 2007). In one investigation of over 700 Denmark residents, those with the highest depression scores were 71% more likely to have experienced a heart attack than were those with lower depression scores (Barefoot & Schroll, 1996). Figure illustrates the gradation in risk of heart attacks for both men and women.
After more than two decades of research, it is now clear that a relationship exists: Patients with heart disease have more depression than the general population, and people with depression are more likely to eventually develop heart disease and experience higher mortality than those who do not have depression (Hare, Toukhsati, Johansson, & Jaarsma, 2013); the more severe the depression, the higher the risk (Glassman, 2007). Consider the following:
The American Heart Association, fully aware of the established importance of depression in cardiovascular diseases, several years ago recommended routine depression screening for all heart disease patients (Lichtman et al., 2008). Recently, they have recommended including depression as a risk factor for heart disease patients (AHA, 2014).
Although the exact mechanisms through which depression might produce heart problems have not been fully clarified, a recent investigation examining this connection in early life has shed some light. In an ongoing study of childhood depression, adolescents who had been diagnosed with depression as children were more likely to be obese, smoke, and be physically inactive than were those who had not received this diagnosis (Rottenberg et al., 2014). One implication of this study is that depression, especially if it occurs early in life, may increase the likelihood of living an unhealthy lifestyle, thereby predisposing people to an unfavorable cardiovascular disease risk profile.
It is important to point out that depression may be just one piece of the emotional puzzle in elevating the risk for heart disease, and that chronically experiencing several negative emotional states may be especially important. A longitudinal investigation of Vietnam War veterans found that depression, anxiety, hostility, and trait anger each independently predicted the onset of heart disease (Boyle, Michalek, & Suarez, 2006). However, when each of these negative psychological attributes was combined into a single variable, this new variable (which researchers called psychological risk factor) predicted heart disease more strongly than any of the individual variables. Thus, rather than examining the predictive power of isolated psychological risk factors, it seems crucial for future researchers to examine the effects of combined and more general negative emotional and psychological traits in the development of cardiovascular illnesses.
Asthma is a chronic and serious disease in which the airways of the respiratory system become obstructed, leading to great difficulty expelling air from the lungs. The airway obstruction is caused by inflammation of the airways (leading to thickening of the airway walls) and a tightening of the muscles around them, resulting in a narrowing of the airways (Figure) (American Lung Association, 2010). Because airways become obstructed, a person with asthma will sometimes have great difficulty breathing and will experience repeated episodes of wheezing, chest tightness, shortness of breath, and coughing, the latter occurring mostly during the morning and night (CDC, 2006).
According to the Centers for Disease Control and Prevention (CDC), around 4,000 people die each year from asthma-related causes, and asthma is a contributing factor to another 7,000 deaths each year (CDC, 2013a). The CDC has revealed that asthma affects 18.7 million U.S. adults and is more common among people with lower education and income levels (CDC, 2013b). Especially concerning is that asthma is on the rise, with rates of asthma increasing 157% between 2000 and 2010 (CDC, 2013b).
Asthma attacks are acute episodes in which an asthma sufferer experiences the full range of symptoms. Asthma exacerbation is often triggered by environmental factors, such as air pollution, allergens (e.g., pollen, mold, and pet hairs), cigarette smoke, airway infections, cold air or a sudden change in temperature, and exercise (CDC, 2013b).
Psychological factors appear to play an important role in asthma (Wright, Rodriguez, & Cohen, 1998), although some believe that psychological factors serve as potential triggers in only a subset of asthma patients (Ritz, Steptoe, Bobb, Harris, & Edwards, 2006). Many studies over the years have demonstrated that some people with asthma will experience asthma-like symptoms if they expect to experience such symptoms, such as when breathing an inert substance that they (falsely) believe will lead to airway obstruction (Sodergren & Hyland, 1999). As stress and emotions directly affect immune and respiratory functions, psychological factors likely serve as one of the most common triggers of asthma exacerbation (Trueba & Ritz, 2013).
People with asthma tend to report and display a high level of negative emotions such as anxiety, and asthma attacks have been linked to periods of high emotionality (Lehrer, Isenberg, & Hochron, 1993). In addition, high levels of emotional distress during both laboratory tasks and daily life have been found to negatively affect airway function and can produce asthma-like symptoms in people with asthma (von Leupoldt, Ehnes, & Dahme, 2006). In one investigation, 20 adults with asthma wore preprogrammed wristwatches that signaled them to breathe into a portable device that measures airway function. Results showed that higher levels of negative emotions and stress were associated with increased airway obstruction and self-reported asthma symptoms (Smyth, Soefer, Hurewitz, Kliment, & Stone, 1999). In addition, D’Amato, Liccardi, Cecchi, Pellegrino, & D’Amato (2010) described a case study of an 18-year-old man with asthma whose girlfriend had broken up with him, leaving him in a depressed state. She had also unfriended him on Facebook , while friending other young males. Eventually, the young man was able to “friend” her once again and could monitor her activity through Facebook. Subsequently, he would experience asthma symptoms whenever he logged on and accessed her profile. When he later resigned not to use Facebook any longer, the asthma attacks stopped. This case suggests that the use of Facebook and other forms of social media may represent a new source of stress—it may be a triggering factor for asthma attacks, especially in depressed asthmatic individuals.
Exposure to stressful experiences, particularly those that involve parental or interpersonal conflicts, has been linked to the development of asthma throughout the lifespan. A longitudinal study of 145 children found that parenting difficulties during the first year of life increased the chances that the child developed asthma by 107% (Klinnert et al., 2001). In addition, a cross-sectional study of over 10,000 Finnish college students found that high rates of parent or personal conflicts (e.g., parental divorce, separation from spouse, or severe conflicts in other long-term relationships) increased the risk of asthma onset (Kilpeläinen, Koskenvuo, Helenius, & Terho, 2002). Further, a study of over 4,000 middle-aged men who were interviewed in the early 1990s and again a decade later found that breaking off an important life partnership (e.g., divorce or breaking off relationship from parents) increased the risk of developing asthma by 124% over the time of the study (Loerbroks, Apfelbacher, Thayer, Debling, & Stürmer, 2009).
A headache is a continuous pain anywhere in the head and neck region. Migraine headaches are a type of headache thought to be caused by blood vessel swelling and increased blood flow (McIntosh, 2013). Migraines are characterized by severe pain on one or both sides of the head, an upset stomach, and disturbed vision. They are more frequently experienced by women than by men (American Academy of Neurology, 2014). Tension headaches are triggered by tightening/tensing of facial and neck muscles; they are the most commonly experienced kind of headache, accounting for about 42% of all headaches worldwide (Stovner et al., 2007). In the United States, well over one-third of the population experiences tension headaches each year, and 2–3% of the population suffers from chronic tension headaches (Schwartz, Stewart, Simon, & Lipton, 1998).
A number of factors can contribute to tension headaches, including sleep deprivation, skipping meals, eye strain, overexertion, muscular tension caused by poor posture, and stress (MedicineNet, 2013). Although there is uncertainty regarding the exact mechanisms through which stress can produce tension headaches, stress has been demonstrated to increase sensitivity to pain (Caceres & Burns, 1997; Logan et al., 2001). In general, tension headache sufferers, compared to non-sufferers, have a lower threshold for and greater sensitivity to pain (Ukestad & Wittrock, 1996), and they report greater levels of subjective stress when faced with a stressor (Myers, Wittrock, & Foreman, 1998). Thus, stress may contribute to tension headaches by increasing pain sensitivity in already-sensitive pain pathways in tension headache sufferers (Cathcart, Petkov, & Pritchard, 2008).
Source: CNX OpenStax
Healthy Dendritic Spines / Unhealthy Dendritic Spines
This browser does not support the video element.
Manage Your Stress
Image by TheVisualMD
For an individual to experience stress, he must first encounter a potential stressor. In general, stressors can be placed into one of two broad categories: chronic and acute. Chronic stressors include events that persist over an extended period of time, such as caring for a parent with dementia, long-term unemployment, or imprisonment. Acute stressors involve brief focal events that sometimes continue to be experienced as overwhelming well after the event has ended, such as falling on an icy sidewalk and breaking your leg (Cohen, Janicki-Deverts, & Miller, 2007). Whether chronic or acute, potential stressors come in many shapes and sizes. They can include major traumatic events, significant life changes, daily hassles, as well as other situations in which a person is regularly exposed to threat, challenge, or danger.
Some stressors involve traumatic events or situations in which a person is exposed to actual or threatened death or serious injury. Stressors in this category include exposure to military combat, threatened or actual physical assaults (e.g., physical attacks, sexual assault, robbery, childhood abuse), terrorist attacks, natural disasters (e.g., earthquakes, floods, hurricanes), and automobile accidents. Men, non-White people, and individuals in lower socioeconomic status (SES) groups report experiencing a greater number of traumatic events than do women, White people, and individuals in higher SES groups (Hatch & Dohrenwend, 2007). Some individuals who are exposed to stressors of extreme magnitude develop post-traumatic stress disorder (PTSD): a chronic stress reaction characterized by experiences and behaviors that may include intrusive and painful memories of the stressor event, jumpiness, persistent negative emotional states, detachment from others, angry outbursts, and avoidance of reminders of the event (American Psychiatric Association [APA], 2013).
Most stressors that we encounter are not nearly as intense as the ones described above. Many potential stressors we face involve events or situations that require us to make changes in our ongoing lives and require time as we adjust to those changes. Examples include death of a close family member, marriage, divorce, and moving (Figure 14.12).
Figure 14.12 Some fairly typical life events, such as moving, can be significant stressors. Even when the move is intentional and positive, the amount of resulting change in daily life can cause stress. (credit: "Jellaluna"/Flickr)
In the 1960s, psychiatrists Thomas Holmes and Richard Rahe wanted to examine the link between life stressors and physical illness, based on the hypothesis that life events requiring significant changes in a person’s normal life routines are stressful, whether these events are desirable or undesirable. They developed the Social Readjustment Rating Scale (SRRS), consisting of 43 life events that require varying degrees of personal readjustment (Holmes & Rahe, 1967). Many life events that most people would consider pleasant (e.g., holidays, retirement, marriage) are among those listed on the SRRS; these are examples of eustress. Holmes and Rahe also proposed that life events can add up over time, and that experiencing a cluster of stressful events increases one’s risk of developing physical illnesses.
In developing their scale, Holmes and Rahe asked 394 participants to provide a numerical estimate for each of the 43 items; each estimate corresponded to how much readjustment participants felt each event would require. These estimates resulted in mean value scores for each event—often called life change units (LCUs) (Rahe, McKeen, & Arthur, 1967). The numerical scores ranged from 11 to 100, representing the perceived magnitude of life change each event entails. Death of a spouse ranked highest on the scale with 100 LCUs, and divorce ranked second highest with 73 LCUs. In addition, personal injury or illness, marriage, and job termination also ranked highly on the scale with 53, 50, and 47 LCUs, respectively. Conversely, change in residence (20 LCUs), change in eating habits (15 LCUs), and vacation (13 LCUs) ranked low on the scale (Table 14.1). Minor violations of the law ranked the lowest with 11 LCUs. To complete the scale, participants checked yes for events experienced within the last 12 months. LCUs for each checked item are totaled for a score quantifying the amount of life change. Agreement on the amount of adjustment required by the various life events on the SRRS is highly consistent, even cross-culturally (Holmes & Masuda, 1974).
Some Stressors on the Social Readjustment Rating Scale (Holmes & Rahe, 1967)
Life event | Life change units |
---|---|
Death of a close family member | 63 |
Personal injury or illness | 53 |
Dismissal from work | 47 |
Change in financial state | 38 |
Change to different line of work | 36 |
Outstanding personal achievement | 28 |
Beginning or ending school | 26 |
Change in living conditions | 25 |
Change in working hours or conditions | 20 |
Change in residence | 20 |
Change in schools | 20 |
Change in social activities | 18 |
Change in sleeping habits | 16 |
Change in eating habits | 15 |
Minor violation of the law | 11 |
Table14.1
Extensive research has demonstrated that accumulating a high number of life change units within a brief period of time (one or two years) is related to a wide range of physical illnesses (even accidents and athletic injuries) and mental health problems (Monat & Lazarus, 1991; Scully, Tosi, & Banning, 2000). In an early demonstration, researchers obtained LCU scores for U.S. and Norwegian Navy personnel who were about to embark on a six-month voyage. A later examination of medical records revealed positive (but small) correlations between LCU scores prior to the voyage and subsequent illness symptoms during the ensuing six-month journey (Rahe, 1974). In addition, people tend to experience more physical symptoms, such as backache, upset stomach, diarrhea, and acne, on specific days in which self-reported LCU values are considerably higher than normal, such as the day of a family member’s wedding (Holmes & Holmes, 1970).
The Social Readjustment Rating Scale (SRRS) provides researchers a simple, easy-to-administer way of assessing the amount of stress in people’s lives, and it has been used in hundreds of studies (Thoits, 2010). Despite its widespread use, the scale has been subject to criticism. First, many of the items on the SRRS are vague; for example, death of a close friend could involve the death of a long-absent childhood friend that requires little social readjustment (Dohrenwend, 2006). In addition, some have challenged its assumption that undesirable life events are no more stressful than desirable ones (Derogatis & Coons, 1993). However, most of the available evidence suggests that, at least as far as mental health is concerned, undesirable or negative events are more strongly associated with poor outcomes (such as depression) than are desirable, positive events (Hatch & Dohrenwend, 2007). Perhaps the most serious criticism is that the scale does not take into consideration respondents’ appraisals of the life events it contains. As you recall, appraisal of a stressor is a key element in the conceptualization and overall experience of stress. Being fired from work may be devastating to some but a welcome opportunity to obtain a better job for others. The SRRS remains one of the most well-known instruments in the study of stress, and it is a useful tool for identifying potential stress-related health outcomes (Scully et al., 2000).
Potential stressors do not always involve major life events. Daily hassles—the minor irritations and annoyances that are part of our everyday lives (e.g., rush hour traffic, lost keys, obnoxious coworkers, inclement weather, arguments with friends or family)—can build on one another and leave us just as stressed as life change events (Figure 14.13) (Kanner, Coyne, Schaefer, & Lazarus, 1981).
Figure 14.13 Daily commutes, whether (a) on the road or (b) via public transportation, can be hassles that contribute to our feelings of everyday stress. (credit a: modification of work by Jeff Turner; credit b: modification of work by "epSos.de"/Flickr)
Researchers have demonstrated that the frequency of daily hassles is actually a better predictor of both physical and psychological health than are life change units. In a well-known study of San Francisco residents, the frequency of daily hassles was found to be more strongly associated with physical health problems than were life change events (DeLongis, Coyne, Dakof, Folkman, & Lazarus, 1982). In addition, daily minor hassles, especially interpersonal conflicts, often lead to negative and distressed mood states (Bolger, DeLongis, Kessler, & Schilling, 1989). Cyber hassles that occur on social media may represent a modern and evolving source of stress. In one investigation, social media stress was tied to loss of sleep in adolescents, presumably because ruminating about social media caused a physiological stress response that increased arousal (van der Schuur, Baumgartner, & Sumter, 2018). Clearly, daily hassles can add up and take a toll on us both emotionally and physically.
Stressors can include situations in which one is frequently exposed to challenging and unpleasant events, such as difficult, demanding, or unsafe working conditions. Although most jobs and occupations can at times be demanding, some are clearly more stressful than others (Figure 14.14). For example, most people would likely agree that a firefighter’s work is inherently more stressful than that of a florist. Equally likely, most would agree that jobs containing various unpleasant elements, such as those requiring exposure to loud noise (heavy equipment operator), constant harassment and threats of physical violence (prison guard), perpetual frustration (bus driver in a major city), or those mandating that an employee work alternating day and night shifts (hotel desk clerk), are much more demanding—and thus, more stressful—than those that do not contain such elements. Table 14.2 lists several occupations and some of the specific stressors associated with those occupations (Sulsky & Smith, 2005).
Figure 14.14 (a) Police officers and (b) firefighters hold high stress occupations. (credit a: modification of work by Australian Civil-Military Centre; credit b: modification of work by Andrew Magill)
Occupations and Their Related Stressors
Occupation | Stressors Specific to Occupation |
---|---|
Police officer | physical dangers, excessive paperwork, dealing with court system, tense interactions, life-and-death decision making |
Firefighter | uncertainty over whether a serious fire or hazard awaits after an alarm, potential for extreme physical danger |
Social worker | little positive feedback from jobs or from the public, unsafe work environments, frustration in dealing with bureaucracy, excessive paperwork, sense of personal responsibility for clients, work overload |
Teacher | Excessive paperwork, lack of adequate supplies or facilities, work overload, lack of positive feedback, threat of physical violence, lack of support from parents and administrators |
Nurse | Work overload, heavy physical work, patient concerns (dealing with death and medical concerns), interpersonal problems with other medical staff (especially physicians) |
Emergency medical worker | Unpredictable and extreme nature of the job, inexperience |
Clerical and secretarial work | Few opportunities for advancement, unsupportive supervisors, work overload, lack of perceived control |
Managerial work | Work overload, conflict and ambiguity in defining the managerial role, difficult work relationships |
Table14.2
Although the specific stressors for these occupations are diverse, they seem to share some common denominators such as heavy workload and uncertainty about and lack of control over certain aspects of a job. Chronic occupational stress contributes to job strain, a work situation that combines excessive job demands and workload with little discretion in decision making or job control (Karasek & Theorell, 1990). Clearly, many occupations other than the ones listed in Table 14.2 involve at least a moderate amount of job strain in that they often involve heavy workloads and little job control (e.g., inability to decide when to take breaks). Such jobs are often low-status and include those of factory workers, postal clerks, supermarket cashiers, taxi drivers, and short-order cooks. Job strain can have adverse consequences on both physical and mental health; it has been shown to be associated with increased risk of hypertension (Schnall & Landsbergis, 1994), heart attacks (Theorell et al., 1998), recurrence of heart disease after a first heart attack (Aboa-Éboulé et al., 2007), significant weight loss or gain (Kivimäki et al., 2006), and major depressive disorder (Stansfeld, Shipley, Head, & Fuhrer, 2012). A longitudinal study of over 10,000 British civil servants reported that workers under 50 years old who earlier had reported high job strain were 68% more likely to later develop heart disease than were those workers under 50 years old who reported little job strain (Chandola et al., 2008).
Some people who are exposed to chronically stressful work conditions can experience job burnout, which is a general sense of emotional exhaustion and cynicism in relation to one’s job (Maslach & Jackson, 1981). Job burnout occurs frequently among those in human service jobs (e.g., social workers, teachers, therapists, and police officers). Job burnout consists of three dimensions. The first dimension is exhaustion—a sense that one’s emotional resources are drained or that one is at the end of her rope and has nothing more to give at a psychological level. Second, job burnout is characterized by depersonalization: a sense of emotional detachment between the worker and the recipients of his services, often resulting in callous, cynical, or indifferent attitudes toward these individuals. Third, job burnout is characterized by diminished personal accomplishment, which is the tendency to evaluate one’s work negatively by, for example, experiencing dissatisfaction with one’s job-related accomplishments or feeling as though one has categorically failed to influence others’ lives through one’s work.
Job strain appears to be one of the greatest risk factors leading to job burnout, which is most commonly observed in workers who are older (ages 55–64), unmarried, and whose jobs involve manual labor. Heavy alcohol consumption, physical inactivity, being overweight, and having a physical or lifetime mental disorder are also associated with job burnout (Ahola, et al., 2006). In addition, depression often co-occurs with job burnout. One large-scale study of over 3,000 Finnish employees reported that half of the participants with severe job burnout had some form of depressive disorder (Ahola et al., 2005). Job burnout is often precipitated by feelings of having invested considerable energy, effort, and time into one’s work while receiving little in return (e.g., little respect or support from others or low pay) (Tatris, Peeters, Le Blanc, Schreurs, & Schaufeli, 2001).
As an illustration, consider Tyre, a nursing assistant who worked in a nursing home. Tyre worked long hours for little pay in a difficult facility. Tyre's supervisor was domineering, unpleasant, and unsupportive, as well as disrespectful of Tyre's personal time, frequently informing them at the last minute they must work several additional hours after their shift ended or report to work on weekends. Tyre had very little autonomy at work. They had little input in day-to-day duties and how to perform them, and was not permitted to take breaks unless explicitly told by their supervisor. Tyre did not feel as though their hard work was appreciated, either by supervisory staff or by the residents of the home. Tyre was very unhappy over the low pay, and felt that many of the residents treated them disrespectfully.
After several years, Tyre began to hate their job. Tyre dreaded going to work in the morning, and gradually developed a callous, hostile attitude toward many of the residents. Eventually, they began to feel they could no longer help the nursing home residents. Tyre’s absenteeism from work increased, and one day they decided that they had had enough and quit. Tyre now has a job in sales, vowing never to work in nursing again.
Finally, our close relationships with friends and family—particularly the negative aspects of these relationships—can be a potent source of stress. Negative aspects of close relationships can include conflicts such as disagreements or arguments, lack of emotional support or confiding, and lack of reciprocity. All of these can be overwhelming, threatening to the relationship, and thus stressful. Such stressors can take a toll both emotionally and physically. A longitudinal investigation of over 9,000 British civil servants found that those who at one point had reported the highest levels of negative interactions in their closest relationship were 34% more likely to experience serious heart problems (fatal or nonfatal heart attacks) over a 13–15 year period, compared to those who experienced the lowest levels of negative interaction (De Vogli, Chandola & Marmot, 2007).
Source: CNX OpenStax
Your Genes & Stress
Image by TheVisualMD
We have seen in the previous discussion how a variety of organizational and personal factors influence the extent to which individuals experience stress on the job. Although many factors, or stressors, have been identified, their effect on psychological and behavioral outcomes is not always as strong as we might expect. This lack of a direct stressor-outcome relationship suggests the existence of potential moderator variables that buffer the effects of potential stressors on individuals. Recent research has identified two such buffers: the degree of social support the individual receives and the individual’s general degree of what is called hardiness. Both
First, let us consider social support. Social support is simply the extent to which organization members feel their peers can be trusted, are interested in one another’s welfare, respect one another, and have a genuine positive regard for one another. When social support is present, individuals feel that they are not alone as they face the more prevalent stressors. The feeling that those around you really care about what happens to you and are willing to help blunts the severity of potential stressors and leads to less-painful side effects. For example, family support can serve as a buffer for executives on assignment in a foreign country and can reduce the stress associated with cross-cultural adjustment.
Much of the more rigorous research on the buffering effects of social support on stress comes from the field of medicine, but it has relevance for organizational behavior. In a series of medical studies, it was consistently found that high peer support reduced negative outcomes of potentially stressful events (surgery, job loss, hospitalization) and increased positive outcomes. These results clearly point to the importance of social support to individual well-being. These results also indicate that managers should be aware of the importance of building cohesive, supportive work groups—particularly among individuals who are most subject to stress.
It is very rare that you are farther than an arm’s length away from your smartphone. You get anxious when there is no Wi-Fi in a hotel room, and if your battery is running low, the stress skyrockets through the roof just imagining what you could miss out on. All of these stresses, combined with an increasing demand for being reachable for your work, can relate to high stress and other negative health effects.
Many workplaces, such as medical professionals, have a high importance to the response rate they employ. Others, such sales teams, may require certain response times to e-mails, calls, or texts, with explanation of why they were not achieved. According to the recent study by the Academy of Management, “employees tally an average of 8 hours a week answering work-related emails after leaving the office.” This also could include regularly taking work home or working while on scheduled time off and vacation, and all can cause stress and lack of sleep and greatly reduce focus and engagement during office hours.
In the UK, surveys have uncovered the impact of technology, with 72.4 percent of respondents admitting that they were performing work tasks outside of regular work hours (https://businessadvice.co.uk/hr/employment-law/always-on-culture-affecting-employees/). Increasing the stress and potential negative affects is when the smartphones are being accessed: mainly before bed and right when they wake up. Feeling groggy in the morning and not getting a good night’s sleep could be due to the exposure to cell phones, computers, and TVs during the two hours before bed. Further studies have also shown that the blue light from devices can disrupt circadian rhythms and the internal clock the helps determine when to sleep and when to wake. (https://www.sciencenewsforstudents.org/article/evening-screen-time-can-sabotage-sleep)
Other countries outside of the U.S. have changed their ways and implemented policies to counteract the “always on” cultural norm that pervades the modern workplace. As of January 1, 2017, French employees now have a new law with the “right to disconnect.” This law allows employees to walk away from their smartphone technology and does not allow employers to fire individuals that do not respond to work-related inquiries while out of office.
The second moderator of stress is hardiness. Hardiness represents a collection of personality characteristics that involve one’s ability to perceptually or behaviorally transform negative stressors into positive challenges. These characteristics include a sense of commitment to the importance of what one is doing, an internal locus of control (as noted above), and a sense of life challenge. In other words, people characterized by hardiness have a clear sense of where they are going and are not easily deterred by hurdles. The pressure of goal frustration does not deter them, because they invest themselves in the situation and push ahead. Simply put, these are people who refuse to give up.34
Several studies of hardiness support the importance of this variable as a stress moderator. One study among managers found that those characterized by hardiness were far less susceptible to illness following prolonged stress. And a study among undergraduates found hardiness to be positively related to perceptions that potential stressors were actually challenges to be met. Thus, factors such as individual hardiness and the degree of social support must be considered in any model of the stress process.
In exploring major influences on stress, it was pointed out that the intensity with which a person experiences stress is a function of organizational factors and personal factors, moderated by the degree of social support in the work environment and by hardiness. We come now to an examination of major consequences of work-related stress. Here we will attempt to answer the “so what?” question. Why should managers be interested in stress and resulting strain?
As a guide for examining the topic, we recognize three intensity levels of stress—no stress, low stress, and high stress—and will study the outcomes of each level. These outcomes are shown schematically in Exhibit 18.6. Four major categories of outcome will be considered: (1) stress and health, (2) stress and counterproductive behavior, (3) stress and job performance, and (4) stress and burnout.
Exhibit 18.6 Major Consequences of Work-Related Stress (Attribution: Copyright Rice University, OpenStax, under CC BY-NC-SA 4.0 license)
High degrees of stress are typically accompanied by severe anxiety and/or frustration, high blood pressure, and high cholesterol levels. These psychological and physiological changes contribute to the impairment of health in several different ways. Most important, high stress contributes to heart disease. The relationship between high job stress and heart disease is well established. In view of the fact that well over a half-million people die of heart disease every year, the impact of stress is important.
High job stress also contributes to a variety of other ailments, including peptic ulcers, arthritis, and several forms of mental illness. In a study by Cobb and Kasl, for example, it was found that individuals with high educational achievement but low job status exhibited abnormally high levels of anger, irritation, anxiety, tiredness, depression, and low self-esteem. In another study, Slote examined the effects of a plant closing in Detroit on stress and stress outcomes. Although factory closings are fairly common, the effects of these closings on individuals have seldom been examined. Slote found that the plant closing led to “an alarming rise in anxiety and illness,” with at least half the employees suffering from ulcers, arthritis, serious hypertension, alcoholism, clinical depression, and even hair loss. Clearly, this life change event took its toll on the mental and physical well-being of the workforce.
Finally, in a classic study of mental health of industrial workers, Kornhauser studied a sample of automobile assembly-line workers. Of the employees studied, he found that 40 percent had symptoms of mental health problems. His main findings may be summarized as follows:
In conclusion, Kornhauser noted:
“Poor mental health occurs whenever conditions of work and life lead to continuing frustration by failing to offer means for perceived progress toward attainment of strongly desired goals which have become indispensable elements of the individual’s self-esteem and dissatisfaction with life, often accompanied by anxieties, social alienation and withdrawal, a narrowing of goals and curtailing of aspirations—in short . . . poor mental health.”
Managers need to be concerned about the problems of physical and mental health because of their severe consequences both for the individual and for the organization. Health is often related to performance, and to the extent that health suffers, so too do a variety of performance-related factors. Given the importance of performance for organizational effectiveness, we will now examine how it is affected by stress.
It is useful from a managerial standpoint to consider several forms of counterproductive behavior that are known to result from prolonged stress. These counterproductive behaviors include turnover and absenteeism, alcoholism and drug abuse, and aggression and sabotage.
Turnover and Absenteeism. Turnover and absenteeism represent convenient forms of withdrawal from a highly stressful job. Results of several studies have indicated a fairly consistent, if modest, relationship between stress and subsequent turnover and absenteeism. In many ways, withdrawal represents one of the easiest ways employees have of handling a stressful work environment, at least in the short run. Indeed, turnover and absenteeism may represent two of the less undesirable consequences of stress, particularly when compared to alternative choices such as alcoholism, drug abuse, or aggression. Although high turnover and absenteeism may inhibit productivity, at least they do little physical harm to the individual or coworkers. Even so, there are many occasions when employees are not able to leave because of family or financial obligations, a lack of alternative employment, and so forth. In these situations, it is not unusual to see more dysfunctional behavior.
Alcoholism and Drug Abuse. It has long been known that stress is linked to alcoholism and drug abuse among employees at all levels in the organizational hierarchy. These two forms of withdrawal offer a temporary respite from severe anxiety and severe frustration. One study by the Department of Health, Education, and Welfare reported, “Our interviews with blue-collar workers in heavy industry revealed a number who found it necessary to drink large quantities of alcohol during lunch to enable them to withstand the pressure or overwhelming boredom of their tasks.” A study in New York revealed a surprising amount of drug abuse by young employees on blue-collar jobs—especially among assembly-line employees and long-haul truck drivers. A third study of a UAW local involving 3,400 workers found 15 percent of the workforce addicted to heroin. And, finally, there is an alarming increase of drug and substance abuse among managers.
Both alcohol and drugs are used by a significant proportion of employees to escape from the rigors of a routine or stressful job. Although many companies have begun in-house programs aimed at rehabilitating chronic cases, these forms of withdrawal seem to continue to be on the increase, presenting another serious problem for modern managers. One answer to this dilemma involves reducing stress on the job that is creating the need for withdrawal from organizational activities.
Aggression and Sabotage. Severe frustration can also lead to overt hostility in the form of aggression toward other people and toward inanimate objects. Aggression occurs when individuals feel frustrated and can find no acceptable, legitimate remedies for the frustration. For instance, a busy secretary may be asked to type a stack of letters, only to be told later that the boss changed his mind and no longer needs the letters typed. The frustrated secretary may react by covert verbal abuse or an intentional slowdown on subsequent work. A more extreme example of aggression can be seen in the periodic reports in newspapers about a worker who “goes berserk” (usually after a reprimand or punishment) and attacks fellow employees.
One common form of aggressive behavior on the job is sabotage. As one study found:
“The roots of sabotage, a frequent aspect of industrial violence, are illustrated by this comment of a steelworker. ‘Sometimes, out of pure meanness, when I make something, I put a little dent in it. I like to do something to make it really unique. Hit it with a hammer deliberately to see if it’ll get by, just so I can say I did it.’ In a product world where everything is alike, sabotage may be a distortion of the guild craftsman’s signature, a way of asserting individuality in a homogeneous world—the only way for a worker to say, ‘That’s mine.’ It may also be a way of striking back against the hostile, inanimate objects that control the worker’s time, muscles, and brain. Breaking a machine in order to get some rest may be a sane thing to do.”
The extent to which frustration leads to aggressive behavior is influenced by several factors, often under the control of managers. Aggression tends to be subdued when employees anticipate that it will be punished, the peer group disapproves, or it has not been reinforced in the past (that is, when aggressive behavior failed to lead to positive outcomes). Thus, it is incumbent upon managers to avoid reinforcing undesired behavior and, at the same time, to provide constructive outlets for frustration. In this regard, some companies have provided official channels for the discharge of aggressive tendencies. For example, many companies have experimented with ombudsmen, whose task it is to be impartial mediators of employee disputes. Results have proved positive. These procedures or outlets are particularly important for nonunion personnel, who do not have contractual grievance procedures.
A major concern of management is the effects of stress on job performance. The relationship is not as simple as might be supposed. The stress-performance relationship resembles an inverted J-curve, as shown in Exhibit 18.7. At very low or no-stress levels, individuals maintain their current levels of performance. Under these conditions, individuals are not activated, do not experience any stress-related physical strain, and probably see no reason to change their performance levels. Note that this performance level may be high or low. In any event, an absence of stress probably would not cause any change.
On the other hand, studies indicate that under conditions of low stress, people are activated sufficiently to motivate them to increase performance. For instance, salespeople and many managers perform best when they are experiencing mild anxiety or frustration. Stress in modest amounts, as when a manager has a tough problem to solve, acts as a stimulus for the individual. The toughness of a problem often pushes managers to their performance limits. Similarly, mild stress can also be responsible for creative activities in individuals as they try to solve difficult (stressful) problems.
Exhibit 18.7 The Relationship Between Stress and Job Performance (Attribution: Copyright Rice University, OpenStax, under CC BY-NC-SA 4.0 license)
Finally, under conditions of high stress, individual performance drops markedly. Here, the severity of the stress consumes attention and energies, and individuals focus considerable effort on attempting to reduce the stress (often employing a variety of counterproductive behaviors as noted below). Little energy is left to devote to job performance, with obvious results.
When job-related stress is prolonged, poor job performance such as that described above often moves into a more critical phase, known as burnout. Burnout is a general feeling of exhaustion that can develop when a person simultaneously experiences too much pressure to perform and too few sources of satisfaction.
Candidates for job burnout seem to exhibit similar characteristics. That is, many such individuals are idealistic and self-motivated achievers, often seek unattainable goals, and have few buffers against stress. As a result, these people demand a great deal from themselves, and, because their goals are so high, they often fail to reach them. Because they do not have adequate buffers, stressors affect them rather directly. This is shown in Exhibit 18.8. As a result of experienced stress, burnout victims develop a variety of negative and often hostile attitudes toward the organization and themselves, including fatalism, boredom, discontent, cynicism, and feelings of personal inadequacy. As a result, the person decreases his or her aspiration levels, loses confidence, and attempts to withdraw from the situation.
Research indicates that burnout is widespread among employees, including managers, researchers, and engineers, that are often hardest to replace by organizations. As a result, it is estimated that 70 percent of the largest U. S. companies have some form of antiburnout/stress reduction training.
Exhibit 18.8 Influences Leading to Job Burnout (Attribution: Copyright Rice University, OpenStax, under CC BY-NC-SA 4.0 license)
Source: CNX OpenStax
Get free access to in-depth articles and track your personal health.
Send this HealthJournal to your friends or across your social medias.