Barotrauma is an injury to soft tissues resulting from a pressure differential between an airspace in the body and the ambient pressure. The resultant expansion or contraction of that space can cause injury.
Ear and sinus
The most common injury in divers is ear barotrauma. On descent, failure to equalize pressure changes within the middle ear space creates a pressure gradient across the eardrum. As the middle ear tissues swell with edema—a consequence of the increased pressure—the pressure difference across the eardrum pushes it into the middle ear space causing it to bleed and possibly rupture.
Forceful equalization under these conditions can increase the pressure differential between the inner ear and the middle ear, resulting in round window rupture with perilymph leakage and inner ear damage. To avoid these pathologic processes, divers must learn proper equalization techniques. The physician can coach this effort by observing movement of the tympanic membrane using simple otoscopy.
Paranasal sinuses, because of their relatively narrow connecting passageways, are especially susceptible to barotrauma, generally on descent. With small changes in pressure (depth), symptoms are usually mild and subacute but can be exacerbated by continued diving. Larger pressure changes can be more injurious, especially with forceful attempts at equilibration (such as the Valsalva maneuver).
Additional risk factors for ear and sinus barotrauma include:
- Use of solid earplugs
- Medication (such as overuse or prolonged use of decongestants leading to rebound congestion)
- Ear or sinus surgery
- Nasal deformity or polyps
- Chronic nasal and sinus disease that interferes with equilibration during the large barometric pressure changes encountered while diving
Divers who suspect they may have ear or sinus barotrauma should discontinue diving and seek medical attention.
Pulmonary
A scuba diver reduces the risk of lung overpressure problems by breathing normally and ascending slowly when breathing compressed gas. Overexpansion of the lungs can result if a scuba diver ascends toward the surface without proper exhalation, which may happen, for example, when a novice diver panics. During ascent, compressed gas trapped in the lung increases in volume until the expansion exceeds the elastic limit of lung tissue, causing damage and allowing gas bubbles to escape into 3 possible locations:
- Pleural space. Gas entering the pleural space can cause lung collapse or pneumothorax.
- Mediastinum. Gas entering the space around the heart, trachea, and esophagus causes mediastinal emphysema and frequently tracks under the skin (subcutaneous emphysema) or into the tissue around the larynx, sometimes precipitating a change in voice characteristics.
- Pulmonary vasculature. Gas rupturing the alveolar walls can enter the pulmonary capillaries and pass via the pulmonary veins to the left side of the heart, resulting in arterial gas embolism (AGE).
While mediastinal or subcutaneous emphysema may resolve spontaneously, pneumothorax generally requires specific treatment to remove the air and reinflate the lung. AGE is a medical emergency, requiring urgent intervention with hyperbaric oxygen therapy (recompression treatment).
Lung overinflation injuries from scuba diving can range from mild to dramatic and life threatening. Although pulmonary barotrauma is uncommon in divers, prompt medical evaluation is necessary, and clinicians must rule out this condition in patients presenting with post-dive respiratory or neurologic symptoms.